
Suggested solutions for Homework 1

Disclaimer: There might be some typos or mistakes, let me know if you find any. Therefore, double check!

Exercise 3.5

We need to show that xy = 0 if and only if (iff) x = 0 or y = 0.

First, assume that x = 0, then we need to show that 0y = 0. Using that 0 is the identity of the addition, we get
0y = (0 + 0)y = 0y + 0y, where we also used the distributive law. Adding −(0y) to both sides of 0y = 0y + 0y,
we get 0 = 0y + 0. Thus 0 = 0y. The proof is similar if y = 0 is assumed.

For the other direction, assume that xy = 0. Also assume that x 6= 0. We only need to show that y = 0.
Multiplying by x−1 from the left on both sides of xy = 0 gives y = x−10 = 0.

Exercise 3.7

We need to show that −(xy) = x(−y) = (−x)y.

First, we pove that −(xy) = x(−y). This is to say that xy + x(−y) = 0. However, this is in fact the case, since
xy + x(−y) = x(y + (−y)) = x0 = 0.

Now, we show in a analogous manner that −(xy) = (−x)y. This is the same statement as xy+(−x)y = 0. The
last statement holds true, since xy + (−x)y = (x+ (−x))y = 0y = 0.

Exercise 4.7

It is to show that x2 + y2 ≥ 2xy.

First, we observe that z2 ≥ 0 for any z ∈ R. The order axiom tells that exactly one of the following statements
hold:

z ∈ P, z = 0, z ∈ −P.

If z ∈ P , then z2 = zz ∈ P , so z2 > 0. Thus z2 ≥ 0. If z = 0, then z2 = 0, hence z2 ≥ 0. In the last case, we
have −z ∈ P , thus z2 = −(−(zz)) = (−z)(−z) ∈ P . Therefore, also in this case we have z2 ≥ 0. Therefore,
for any z ∈ R, z2 ≥ 0.

Since (x− y)2 = x2 + y2 − 2xy, we have x2 + y2 − 2xy ≥ 0. This is equivalent to x2 + y2 ≥ 2xy.

Exercise 4.9

We show that if x ≤ y + ε for every ε > 0, then x ≤ y.

Setting z = x− y, it suffices to show that z ≤ 0, whenever z ≤ ε for every ε > 0. Assuming the contrary: z > 0,
we only need to find ε > 0 such that ε < z in order to arrive at a contradiction. A plausible candidate for ε is 1

2z.

To be able to define this ε, we define 2 := 1+1, which is a positive number, hence non-zero. Since 2 is not zero,
it has a multiplicative inverse 1

2 . Now, the definition ε := 1
2z can be made.

Since, 2 is positive, also 1
2 is positive. Therefore, ε is positive because both z and 1

2 are positive. It remains to
show that ε ≤ z. However, since 0 < z, we have z < z+ z = 2z. Multiplying by the positive number 1

2 , we arrive
at ε = 1

2z < z. This contradicts the assumption z > 0, hence z ≤ 0.

Exercise 5.1

Let X ⊂ R be non-empty and bounded above. Define a = lubX. Let ε > 0, we need to show the existence of a
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x ∈ X such that a− ε < x ≤ a.

The second inequality holds for any x ∈ X because a is an upper bound for X. Assuming that there is no x ∈ X
such that a− ε < x, we conclude that x ≤ a− ε for all x ∈ X. This is to say that a− ε is an upper bound for
X. This is a contradiction because a− ε < a, thus a is not the least upper bound. Consequently, the assumption
that there is no x ∈ X such that a− ε < x, is not true.

Exercise 5.7 Let X, Y be non-empty subsets of R that are bounded above. Define a = lubX, b = lubY . We
show that a+ b = lub(X + Y ).

In fact, for any z ∈ X + Y , we can write z = x+ y for some x ∈ X and y ∈ Y . Since a is an upper bound for
X and b is an upper bound for Y , we have z = x+ y ≤ a+ b. Since z ∈ X + Y was arbitrary, we conclude that
a+ b is an upper bound for X + Y .

It remains to show that a + b is the least upper bound. Assume that there is a smaller upper bound c < a + b.
Define ε = (a + b − c)/2 > 0. By Exercise 5.1, there is an x ∈ X such that a − ε < x and a y ∈ Y such that
b − ε < y. We have x + y > a − ε + b − ε = a + b − 2ε = c. Therefore, c cannot be the an upper bound for
X + Y .

Exercise 5.8

Let f : (a, b)→ R be strictly increasing in each c ∈ (a, b). We show that f is strictly increasing.

Let’s assume the contrary that there are c, d ∈ (a, b) such that c < d and f(c) ≥ f(d). Then the set X = {x|a <
x < d, f(x) ≥ f(d)} is non-empty and bounded above. We can define A = lubX.

We know that A ≤ d. By Exercise 5.1, we know that for all ε > 0 there is an x ∈ (a, d) such that A− ε < x and
f(x) ≥ f(d). The condition that f is strictly increasing in A provides δ > 0 such that f is strictly increasing on
(A− δ, A+ δ).

We distinguish two cases: A < d and A = d. If A < d, assume without loss of generality that δ < d−A. We set
ε = δ/2 and pick x ∈ (A− ε, A] such that f(x) ≥ f(d). But this contradicts the monotonicity of f in A because
f(A+ ε) < f(d) ≤ f(x). The first equality follows from the definition of A and that A < A+ ε < d. (Note that
here both x and A+ ε are in the interval (A− δ, A+ δ), where f is strictly increasing, also x < A+ ε).

If A = d, then setting ε = δ and picking x ∈ (A− δ, d) such that f(x) ≥ f(d) = f(A) yields a contradiction to
the strict monotonicity of f in A.
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