Suggested solutions for Homework 1

Disclaimer: There might be some typos or mistakes, let me know if you find any. Therefore, double check!

Exercise 3.5

We need to show that xy = 0 if and only if (iff) x = 0 or y = 0.

First, assume that x = 0, then we need to show that 0y = 0. Using that 0 is the identity of the addition, we get 0y = (0+0)y = 0y + 0y, where we also used the distributive law. Adding -(0y) to both sides of 0y = 0y + 0y, we get 0 = 0y + 0. Thus 0 = 0y. The proof is similar if y = 0 is assumed.

For the other direction, assume that xy = 0. Also assume that $x \neq 0$. We only need to show that y = 0. Multiplying by x^{-1} from the left on both sides of xy = 0 gives $y = x^{-1}0 = 0$.

Exercise 3.7

We need to show that -(xy) = x(-y) = (-x)y.

First, we pove that -(xy) = x(-y). This is to say that xy + x(-y) = 0. However, this is in fact the case, since xy + x(-y) = x(y + (-y)) = x0 = 0.

Now, we show in a analogous manner that -(xy) = (-x)y. This is the same statement as xy + (-x)y = 0. The last statement holds true, since xy + (-x)y = (x + (-x))y = 0y = 0.

Exercise 4.7

It is to show that $x^2 + y^2 \ge 2xy$.

First, we observe that $z^2 \ge 0$ for any $z \in \mathbb{R}$. The order axiom tells that exactly one of the following statements hold:

$$z \in P, \quad z = 0, \quad z \in -P.$$

If $z \in P$, then $z^2 = zz \in P$, so $z^2 > 0$. Thus $z^2 \ge 0$. If z = 0, then $z^2 = 0$, hence $z^2 \ge 0$. In the last case, we have $-z \in P$, thus $z^2 = -(-(zz)) = (-z)(-z) \in P$. Therefore, also in this case we have $z^2 \ge 0$. Therefore, for any $z \in \mathbb{R}$, $z^2 \ge 0$.

Since $(x-y)^2 = x^2 + y^2 - 2xy$, we have $x^2 + y^2 - 2xy \ge 0$. This is equivalent to $x^2 + y^2 \ge 2xy$.

Exercise 4.9

We show that if $x \leq y + \epsilon$ for every $\epsilon > 0$, then $x \leq y$.

Setting z = x - y, it suffices to show that $z \le 0$, whenever $z \le \epsilon$ for every $\epsilon > 0$. Assuming the contrary: z > 0, we only need to find $\epsilon > 0$ such that $\epsilon < z$ in order to arrive at a contradiction. A plausible candidate for ϵ is $\frac{1}{2}z$.

To be able to define this ϵ , we define 2 := 1 + 1, which is a positive number, hence non-zero. Since 2 is not zero, it has a multiplicative inverse $\frac{1}{2}$. Now, the definition $\epsilon := \frac{1}{2}z$ can be made.

Since, 2 is positive, also $\frac{1}{2}$ is positive. Therefore, ϵ is positive because both z and $\frac{1}{2}$ are positive. It remains to show that $\epsilon \leq z$. However, since 0 < z, we have z < z + z = 2z. Multiplying by the positive number $\frac{1}{2}$, we arrive at $\epsilon = \frac{1}{2}z < z$. This contradicts the assumption z > 0, hence $z \leq 0$.

Exercise 5.1

Let $X \subset \mathbb{R}$ be non-empty and bounded above. Define a = lub X. Let $\epsilon > 0$, we need to show the existence of a

 $x \in X$ such that $a - \epsilon < x \leq a$.

The second inequality holds for any $x \in X$ because a is an upper bound for X. Assuming that there is no $x \in X$ such that $a - \epsilon < x$, we conclude that $x \le a - \epsilon$ for all $x \in X$. This is to say that $a - \epsilon$ is an upper bound for X. This is a contradiction because $a - \epsilon < a$, thus a is not the least upper bound. Consequently, the assumption that there is no $x \in X$ such that $a - \epsilon < x$, is not true.

Exercise 5.7 Let X, Y be non-empty subsets of \mathbb{R} that are bounded above. Define a = lubX, b = lubY. We show that a + b = lub(X + Y).

In fact, for any $z \in X + Y$, we can write z = x + y for some $x \in X$ and $y \in Y$. Since a is an upper bound for X and b is an upper bound for Y, we have $z = x + y \le a + b$. Since $z \in X + Y$ was arbitrary, we conclude that a + b is an upper bound for X + Y.

It remains to show that a + b is the least upper bound. Assume that there is a smaller upper bound c < a + b. Define $\epsilon = (a + b - c)/2 > 0$. By Exercise 5.1, there is an $x \in X$ such that $a - \epsilon < x$ and a $y \in Y$ such that $b - \epsilon < y$. We have $x + y > a - \epsilon + b - \epsilon = a + b - 2\epsilon = c$. Therefore, c cannot be the an upper bound for X + Y.

Exercise 5.8

Let $f:(a,b) \to \mathbb{R}$ be strictly increasing in each $c \in (a,b)$. We show that f is strictly increasing.

Let's assume the contrary that there are $c, d \in (a, b)$ such that c < d and $f(c) \ge f(d)$. Then the set $X = \{x | a < x < d, f(x) \ge f(d)\}$ is non-empty and bounded above. We can define A = lubX.

We know that $A \le d$. By Exercise 5.1, we know that for all $\epsilon > 0$ there is an $x \in (a, d)$ such that $A - \epsilon < x$ and $f(x) \ge f(d)$. The condition that f is strictly increasing in A provides $\delta > 0$ such that f is strictly increasing on $(A - \delta, A + \delta)$.

We distinguish two cases: A < d and A = d. If A < d, assume without loss of generality that $\delta < d - A$. We set $\epsilon = \delta/2$ and pick $x \in (A - \epsilon, A]$ such that $f(x) \ge f(d)$. But this contradicts the monotonicity of f in A because $f(A + \epsilon) < f(d) \le f(x)$. The first equality follows from the definition of A and that $A < A + \epsilon < d$. (Note that here both x and $A + \epsilon$ are in the interval $(A - \delta, A + \delta)$, where f is strictly increasing, also $x < A + \epsilon$).

If A = d, then setting $\epsilon = \delta$ and picking $x \in (A - \delta, d)$ such that $f(x) \ge f(d) = f(A)$ yields a contradiction to the strict monotonicity of f in A.