Suggested solutions for Homework 1

Disclaimer: There might be some typos or mistakes, let me know if you find any. Therefore, double check!

Exercise 3.5

We need to show that $x y=0$ if and only if (iff) $x=0$ or $y=0$.
First, assume that $x=0$, then we need to show that $0 y=0$. Using that 0 is the identity of the addition, we get $0 y=(0+0) y=0 y+0 y$, where we also used the distributive law. Adding $-(0 y)$ to both sides of $0 y=0 y+0 y$, we get $0=0 y+0$. Thus $0=0 y$. The proof is similar if $y=0$ is assumed.

For the other direction, assume that $x y=0$. Also assume that $x \neq 0$. We only need to show that $y=0$. Multiplying by x^{-1} from the left on both sides of $x y=0$ gives $y=x^{-1} 0=0$.

Exercise 3.7

We need to show that $-(x y)=x(-y)=(-x) y$.
First, we pove that $-(x y)=x(-y)$. This is to say that $x y+x(-y)=0$. However, this is in fact the case, since $x y+x(-y)=x(y+(-y))=x 0=0$.

Now, we show in a analogous manner that $-(x y)=(-x) y$. This is the same statement as $x y+(-x) y=0$. The last statement holds true, since $x y+(-x) y=(x+(-x)) y=0 y=0$.

Exercise 4.7

It is to show that $x^{2}+y^{2} \geq 2 x y$.
First, we observe that $z^{2} \geq 0$ for any $z \in \mathbb{R}$. The order axiom tells that exactly one of the following statements hold:

$$
z \in P, \quad z=0, \quad z \in-P
$$

If $z \in P$, then $z^{2}=z z \in P$, so $z^{2}>0$. Thus $z^{2} \geq 0$. If $z=0$, then $z^{2}=0$, hence $z^{2} \geq 0$. In the last case, we have $-z \in P$, thus $z^{2}=-(-(z z))=(-z)(-z) \in P$. Therefore, also in this case we have $z^{2} \geq 0$. Therefore, for any $z \in \mathbb{R}, z^{2} \geq 0$.
Since $(x-y)^{2}=x^{2}+y^{2}-2 x y$, we have $x^{2}+y^{2}-2 x y \geq 0$. This is equivalent to $x^{2}+y^{2} \geq 2 x y$.

Exercise 4.9

We show that if $x \leq y+\epsilon$ for every $\epsilon>0$, then $x \leq y$.
Setting $z=x-y$, it suffices to show that $z \leq 0$, whenever $z \leq \epsilon$ for every $\epsilon>0$. Assuming the contrary: $z>0$, we only need to find $\epsilon>0$ such that $\epsilon<z$ in order to arrive at a contradiction. A plausible candidate for ϵ is $\frac{1}{2} z$.
To be able to define this ϵ, we define $2:=1+1$, which is a positive number, hence non-zero. Since 2 is not zero, it has a multiplicative inverse $\frac{1}{2}$. Now, the definition $\epsilon:=\frac{1}{2} z$ can be made.
Since, 2 is positive, also $\frac{1}{2}$ is positive. Therefore, ϵ is positive because both z and $\frac{1}{2}$ are positive. It remains to show that $\epsilon \leq z$. However, since $0<z$, we have $z<z+z=2 z$. Multiplying by the positive number $\frac{1}{2}$, we arrive at $\epsilon=\frac{1}{2} z<z$. This contradicts the assumption $z>0$, hence $z \leq 0$.

Exercise 5.1

Let $X \subset \mathbb{R}$ be non-empty and bounded above. Define $a=\operatorname{lub} X$. Let $\epsilon>0$, we need to show the existence of a
$x \in X$ such that $a-\epsilon<x \leq a$.
The second inequality holds for any $x \in X$ because a is an upper bound for X. Assuming that there is no $x \in X$ such that $a-\epsilon<x$, we conclude that $x \leq a-\epsilon$ for all $x \in X$. This is to say that $a-\epsilon$ is an upper bound for X. This is a contradiction because $a-\epsilon<a$, thus a is not the least upper bound. Consequently, the assumption that there is no $x \in X$ such that $a-\epsilon<x$, is not true.

Exercise 5.7 Let X, Y be non-empty subsets of \mathbb{R} that are bounded above. Define $a=\operatorname{lub} X, b=\operatorname{lub} Y$. We show that $a+b=\operatorname{lub}(X+Y)$.

In fact, for any $z \in X+Y$, we can write $z=x+y$ for some $x \in X$ and $y \in Y$. Since a is an upper bound for X and b is an upper bound for Y, we have $z=x+y \leq a+b$. Since $z \in X+Y$ was arbitrary, we conclude that $a+b$ is an upper bound for $X+Y$.
It remains to show that $a+b$ is the least upper bound. Assume that there is a smaller upper bound $c<a+b$. Define $\epsilon=(a+b-c) / 2>0$. By Exercise 5.1, there is an $x \in X$ such that $a-\epsilon<x$ and a $y \in Y$ such that $b-\epsilon<y$. We have $x+y>a-\epsilon+b-\epsilon=a+b-2 \epsilon=c$. Therefore, c cannot be the an upper bound for $X+Y$.

Exercise 5.8

Let $f:(a, b) \rightarrow \mathbb{R}$ be strictly increasing in each $c \in(a, b)$. We show that f is strictly increasing.
Let's assume the contrary that there are $c, d \in(a, b)$ such that $c<d$ and $f(c) \geq f(d)$. Then the set $X=\{x \mid a<$ $x<d, f(x) \geq f(d)\}$ is non-empty and bounded above. We can define $A=\operatorname{lub} X$.
We know that $A \leq d$. By Exercise 5.1, we know that for all $\epsilon>0$ there is an $x \in(a, d)$ such that $A-\epsilon<x$ and $f(x) \geq f(d)$. The condition that f is strictly increasing in A provides $\delta>0$ such that f is strictly increasing on $(A-\delta, A+\delta)$.

We distinguish two cases: $A<d$ and $A=d$. If $A<d$, assume without loss of generality that $\delta<d-A$. We set $\epsilon=\delta / 2$ and pick $x \in(A-\epsilon, A]$ such that $f(x) \geq f(d)$. But this contradicts the monotonicity of f in A because $f(A+\epsilon)<f(d) \leq f(x)$. The first equality follows from the definition of A and that $A<A+\epsilon<d$. (Note that here both x and $A+\epsilon$ are in the interval ($A-\delta, A+\delta$), where f is strictly increasing, also $x<A+\epsilon$).

If $A=d$, then setting $\epsilon=\delta$ and picking $x \in(A-\delta, d)$ such that $f(x) \geq f(d)=f(A)$ yields a contradiction to the strict monotonicity of f in A.

