
Suggested solutions for Homework 4

Disclaimer: There might be some typos or mistakes, let me know if you find any. Therefore, double check! The
solutions presented here are more concise than what is expected in quizzes and tests.

Notation: N = {positive integers},N0 = {non-negative integers},Z = {integers},Q = {rational numbers},R =
{real numbers}

X ≈ Y means X and Y are equivalent (they have the same cardinality). For a finite set X, let |X| ∈ N0 be the
number of elements of X.

Exercise 10.3 It is to show that limn→∞
1

n+2 = 0.

Fix ε > 0. Denote an = 1
n+2 . We need to find N ∈ N such that

|an − 0| =
∣∣∣∣ 1

n+ 2

∣∣∣∣ < ε, whenever n ≥ N.

By the Archimedean property of R, pick N ∈ N so big such that 1
ε < N + 2. Then for all n ≥ N , we have

1
ε < N + 2 ≤ n+ 2. Therefore

∣∣∣ 1
n+2

∣∣∣ < ε.

Exercise 10.6 It is to show that limn→∞
2n
n+2 = 2.

Fix ε > 0. Denote an = 2n
n+2 . We need to find N ∈ N such that

|an − 2| =
∣∣∣∣ 2n

n+ 2
− 2

∣∣∣∣ < ε, whenever n ≥ N.

Compute

an =
2n

n+ 2
=

2(n+ 2)− 4

n+ 2
= 2− 4

n+ 2

By the Archimedean property of R, pick N ∈ N so big such that 4
ε < N + 2. Then for all n ≥ N , we have

4
ε < N + 2 ≤ n+ 2. Therefore

|an − 2| =
∣∣∣∣ 4

n+ 2

∣∣∣∣ < ε, whenever n ≥ N.

In the rest of the homework, we will use the following lemma several times.

Lemma (Reverse triangle inequality). For real numbers x, y, the inequality ||x| − |y|| ≤ |x− y| holds.

Proof. By the usual triangle inequality |x| = |(x− y)+ y| ≤ |x− y|+ |y|. Hence |x|− |y| ≤ |x− y|. By switching
x and y, we have |y| − |x| ≤ |y − x|, therefore also |y| − |x| ≤ |x− y|. In conclusion ||x| − |y|| ≤ |x− y|.

Exercise 10.10 It is to show that an = n+ 1
n has no limit.

Assume that limn→∞ an = L ∈ R. For all n ≥ |L|+ 1, we have

|an − L| =
∣∣∣∣n+

1

n
− L

∣∣∣∣ ≥ ∣∣∣∣n+
1

n

∣∣∣∣− |L| = n+
1

n
− |L| ≥ 1 +

1

n
> 1,
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where we used the reverse triangle inequality in the first inequality. Thus |an −L| > 1 whenever n ≥ |L|+1, i.e.
an cannot converge to L.

Exercise 10.12 Let limn→∞ an = L. We need to prove that limn→∞ |an| = |L|.

Fix ε > 0. Since limn→∞ an = L, there is an N ∈ N such that

|an − L| < ε, whenever n ≥ N.

By the reverse triangle inequality,

||an| − |L|| ≤ |an − L| < ε, whenever n ≥ N.

Exercise 11.4 We need to find the rule for {an}∞n=1 and find the formula for the subsequence {af(n)}∞n=1.

We can write an = bn
cn

, where cn = 2n−1. Observing the sequence bn, we find the recursive rule that b1 = 1
and bn+1 = 2bn + (−1)n. We wish to find a closed formula for bn, so let us substitute the formula for bn in the
formula for bn+1, we get

bn+1 = 2bn + (−1)n

= 2(2bn−1 + (−1)n−1) + (−1)n

= 4bn−1 + 2(−1)n−1 + (−1)n.

Repeating this procedure i.e. substituting the rule for bn−1 as next, we see that

bn+1 = 8bn−2 + 4(−1)n−2 + 2(−1)n−1 + (−1)n,

If we repeat until we get to b1 on the right hand side, we have

bn+1 = 2nb1 + 2n−1(−1)1 + 2n−2(−1)2 + · · ·+ 2n−2(−1)2 + 20(−1)n

=

n∑
k=0

2k(−1)n−k

= (−1)n
n∑
k=0

2k(−1)−k

= (−1)n
n∑
k=0

2k(−1)k

= (−1)n
n∑
k=0

(−2)k

= (−1)n 1− (−2)n+1

1− (−2)
= (−1)n 1− (−2)n+1

3
.

Here we used the formula
∑n
k=0 γ

k = 1−γn+1

1−γ , for γ 6= 0. Therefore, bn = (−1)n−1 1−(−2)n
3 and an = bn

cn
=

(−1)n−1 1−(−2)n
3 2n−1 = 1−(−2)n

3 (−2)n−1 .

Obviously, the subsequence {af(n)}∞n=1 picks every second element of the sequence {an}∞n=1 beginning with the

2nd, therefore, f(n) = 2n and af(n) =
1−(−2)2n
3 (−2)2n−1 .

Exercise 11.8 Assume that limn→∞ a2n = limn→∞ a2n−1 = L. We need to show that limn→∞ an = L.

Fix ε > 0 and pick N1 so big such that

|a2n − L| < ε, whenever n ≥ N1.
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Also pick N2 so big such that
|a2n−1 − L| < ε, whenever n ≥ N2.

Define N = 2max(N1, N2). Then for any m ≥ N , we have m ≥ 2N1 and m ≥ 2N2.

For such m ≥ N if m even then m = 2n for some n ≥ N1. If m ≥ N is odd then m = 2n− 1 for some n > N2.
Therefore

|am − L| < ε, whenever m ≥ N.

Exercise 11.9 Let {an}∞n=1 have finite range {L1, · · ·LK} for K ∈ N and Lk ∈ R for all k ∈ {1, 2, · · · ,K}. We
need to show that {an}∞n=1 has a subsequence which converges.

Since an ∈ {L1, · · ·LK} for all n ∈ N, there is a k ∈ {1, 2, · · · ,K} such that an = Lk for infinitely many n. If
this wasn’t true, then each value Lk would appear in the sequence only finitely many times, but that contradicts
the sequence being infinitely long. Let us fix that k for which an = Lk for infinitely many n.

Define the index set A = {n ∈ N | an = Lk}. Note that A is unbounded. We define the function f : N → A
recursively as follows:

f(1) := minA

f(m+ 1) := min{n ∈ A | n > f(m)}.

Then f is increasing with values in A. Thus {af(n)}∞n=1 is a subsequence such that af(n) = Lk for all n ∈ N.
This means that {af(n)}∞n=1 is a constant sequence Lk, therefore it converges to Lk.

Exercise 11.11 Let {an}∞n=1 be a real valued sequence and f : N → N increasing. Then {af(n)}∞n=1 is a
subsequence of {an}∞n=1. Furthermore, if g : N → N is increasing, then {af(g(n))}∞n=1 is a subsequence of
{af(n)}∞n=1.

However f(g(n)) = f ◦ g(n), where f ◦ g : N → N is an increasing function, therefore {af◦g(n)}∞n=1 is in fact a
subsequence of {an}∞n=1.

Exercise 11.12 We need to show that the set of subsequences of { 1n}
∞
n=1 is uncountable.

The map f : N→ R, f(n) = 1
n is one-to-one. This also means that for g, h: N→ N increasing f ◦ g = f ◦ h iff

g = h. In fact, if g = h, then obviously f ◦ g = f ◦ h. On the other hand, if f ◦ g = f ◦ h then for all n ∈ N, we
have f ◦ g(n) = f ◦ h(n), thus g(n) = h(n) because f is one-to-one. But this means that g = h.

This means that there is a bijection between the sets A and B

A = {g : N→ N | g is increasing }
B = {f ◦ g | g : N→ N is increasing }.

Note that B is the set of all subsets of { 1n}
∞
n=1 and A is the set of increasing sequences with values in N. Since

A ≈ B, it suffices to show that A is uncountable.

Assume for the sake of contradiction that A is countable. Then the elements of A can be listed A =
{a(1), a(2), a(3), · · · }. Note that each a(i) is a sequence {a(i)n }∞n=1. Let us define an increasing b : N → N
recursively as follows

b1 := a
(1)
2

bm+1 := min{n ∈ N | n > max(a
(m+1)
m+1 , bm)}.

Then for any m ∈ N, we have bm > a
(m)
m , thus b 6∈ A which is a contradiction. Therefore A is uncountable.
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Exercise 12.2 Dividing by n2 in both the numerator and the denominator in the first step, we obtain

lim
n→∞

2n2 + n+ 3

n2 + 1
= lim
n→∞

2 + 1
n + 3

n2

1 + 1
n2

=
limn→∞

(
2 + 1

n + 3
n2

)
limn→∞

(
1 + 1

n2

)
=
limn→∞ 2 + limn→∞

1
n + limn→∞

3
n2

limn→∞ 1 + limn→∞
1
n2

=
2 + 0 + 3

(
limn→∞

1
n

) (
limn→∞

1
n

)
1 +

(
limn→∞

1
n

) (
limn→∞

1
n

)
=
2 + 0 + 3 · 0 · 0

1 + 0 · 0
= 2,

where we repeatedly used that limn→∞
1
n = 0.

Exercise 12.4 Using the identity (a−b)(a+b) = a2−b2 we obtain (
√
n+ 1−

√
n)(
√
n+ 1+

√
n) = n+1−n = 1,

therefore

lim
n→∞

√
n+ 1−

√
n = lim

n→∞

1√
n+ 1 +

√
n
.

We claim that this limit goes to 0. In fact, fix ε > 0 and pick N ∈ N so big such that 1
ε2 < N . Then for any

n ≥ N , we have ∣∣∣∣ 1√
n+ 1 +

√
n
− 0

∣∣∣∣ = 1√
n+ 1 +

√
n
≤ 1√

n
≤ 1√

N
< ε.

Exercise 12.6 Let an ≥ 0 for n ∈ N and limn→∞ an = L. We show that limn→∞
√
an =

√
L.

If an ≥ 0, then it is easy to see that L ≥ 0. Let is consider the cases that L = 0 and L > 0.

In the case L = 0, fix ε > 0, pick N ∈ N so big such that |an| < ε2 for all n ≥ N . Then |√an − 0| = √an < ε
for all n ≥ N .

In the case L > 0, we have (
√
an −

√
L)(
√
an +

√
L) = an − L, therefore

|
√
an −

√
L| = |an − L|

√
an +

√
L
≤ |an − L|√

L
.

Fix ε > 0 and pick N ∈ N such that |an − L| < ε
√
L whenever n ≥ N . Then for any n ≥ N , we have

|√an −
√
L| < ε.

Exercise 12.7 Let an 6= 0 assume that limn→∞
an+1

an
= 0. We show that then limn→∞ an = 0.

Since limn→∞
an+1

an
= 0, there exists a N ∈ N such that for all n ≥ N , we have

∣∣∣an+1

an

∣∣∣ < 1
2 , i.e. |an+1| < 1

2 |an|.

The inequality |an+1| < 1
2 |an| holds for any n ≥ N , therefore by iteration, for any k ∈ N, we have

|aN+k| <
(
1

2

)k
|aN |.

Fix ε > 0, pick K ∈ N so big such that
(
1
2

)k |aN | < ε. Then for all k ≥ K, we have |aN+k| < ε. Therefore for

all n ≥ Ñ := N +K, we have |an| < ε . This is to say that limn→∞ an = 0.
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