
Suggested solutions for Homework 5

Disclaimer: There might be some typos or mistakes, let me know if you find any. Therefore, double check! The
solutions presented here are more concise than what is expected in quizzes and tests.

Notation: N = {positive integers},N0 = {non-negative integers},Z = {integers},Q = {rational numbers},R =
{real numbers}

X ≈ Y means X and Y are equivalent (they have the same cardinality). For a finite set X, let |X| ∈ N0 be the
number of elements of X.

Exercise 13.3 Defining an := (−1)n, bn = 1 clearly |an| ≤ 1 is bounded and limn→∞ bn = 1 is convergent.
However, an + bn = (−1)n + 1 and anbn = (−1)n are divergent. The idea to prove this is the same in
both cases, we show that cn = anbn = (−1)n is divergent. Note that the sequence takes both values -1 and
1 infinitely often. Assume that limn→∞ cn = L. Then there is a N ∈ N such that |cn − L| < 1 for all
n ≥ N . This is a contradiction since there are k ≥ N and l ≥ N such that ck = 1 and cl = −1. Then
2 = |ck − cl| = |(ck − L)− (cl − L)| ≤ |ck − L|+ |cl − L| < 1 + 1 = 2 which is a contradiction.

Exercise 13.4 Define an = 1·3·5···(2n−1)
2·4·6···2n . Then |an| =

∣∣ 1
2

∣∣ · ∣∣ 34 ∣∣ · ∣∣ 56 ∣∣ · · · ∣∣ 2n−12n

∣∣ < 1.

Exercise 15.1 Let limn→∞ an =∞ and pick a subsequence {af(n)}∞n=1. Fix M > 0. By definition of divergence
to infinity, there is a N ∈ N such that an > M whenever n ≥ N . Since f : N → N is increasing, we can show
by induction that for all n, we have n ≤ f(n). This means that af(n) > M whenever n ≥ N , proving that
limn→∞ af(n) =∞.

Exercise 15.2 Let limn→∞ an = ∞ and |bn| ≤ K. Fix M > 0. By definition of divergence to infinity, there
exists N ∈ N such that an > M +K whenever n ≥ N . Using that bn ≤ |bn| ≤ K, we obtain

an + bn ≥ an − |bn| ≥ an −K > M,

where the last inequality holds whenever n ≥ N .

Exercise 15.6 We need to show that limn→∞ an = ∞ iff there exists N ∈ N such that 0 < an for all n ≥ N
and limn→∞

1
an

= 0.

Assume limn→∞ an = ∞ and fix ε > 0. Then there exists a N ∈ N such that an >
1
ε whenever n ≥ N . Thus

also
∣∣∣ 1
an
− 0
∣∣∣ = 1

an
< ε whenever n ≥ N , proving that an > 0 whenever n ≥ N and limn→∞

1
an

= 0.

Now assume that there is N ∈ N such that an > 0 whenever n ≥ N and limn→∞
1
an

= 0. Call bn = 1
an

and

fix M > 0. We find Ñ ∈ N such that |bn| < 1
M whenever n ≥ Ñ . Note that for n ≥ max(N, Ñ), we have

0 < bn = |bn| < 1
M . This shows that M < an whenever n ≥ max(N, Ñ), proving that limn→∞ an =∞.

Exercise 16.3 Let {an} be increasing and not bounded. Note that a1 ≤ an for all n ∈ N, i.e. the sequence is
bounded below by a1. Fix M > 0, then there is an N ∈ N such that aN > M , this N exists since otherwise
{an} would be bounded. By monotonicity, an ≥ aN > M for all n ≥ N .

Exercise 16.5 Note that {
(
1 + 1

n2

)n2

} is a subsequence of {
(
1 + 1

n

)n}, so it has the same limit e.

For (b) let us write
(
1 + 1

n+1

)n
=
(
1 + 1

n+1

)n+1

·
(
1 + 1

n+1

)−1
. The first factor converges to e the second

converges to 1, so the limit is again e.
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Similarly for (c), the sequence
(
1 + 1

n

)n+1
=
(
1 + 1

n

)n · (1 + 1
n

)
converges to e.

For the limit in (d)
(
1 + 1

n2

)n
=
((

1 + 1
n2

)n2) 1
n

we use that 2 ≤
(
1 + 1

n

)n ≤ 4. Therefore, 2
1
n ≤(

1 + 1
n2

)n ≤ 4
1
n . By theorem 16.4 both the upper and lower bounds converge to 1, thus by the squeeze theorem,

limn→∞
(
1 + 1

n2

)n
= 1.

Similarly, for (e), we get 2n ≤
(
1 + 1

n

)n2

, therefore limn→∞
(
1 + 1

n

)n2

=∞.

For (f) we simply note that
(
1 + 1

2n

)2n
=
((

1 + 1
2n

)2n) 1
2

. The sequence
(
1 + 1

2n

)2n
converges to e, therefore

by Exercise 12.6, we also have limn→∞
(
1 + 1

2n

)2n
= e

1
2 .

Exercise 16.6 For part (a), we fix 0 ≤ a < b. We show bn+1−an+1

b−a > (n + 1)an for n ∈ N. Simply note that

(b−a)(bn+ bn−1a+ · · ·+ ban−1+an) = bn+1−an+1. Therefore bn+1−an+1

b−a = bn+ bn−1a+ · · ·+ ban−1+an >
(n+ 1)an, where we used that a < b.

Setting a = 1 + 1
n+1 and b = 1 + 1

n , we have a < b thus by (a)(
1 +

1

n

)n+1

= bb+1 > an+1 +(b− a)(n+1)an = an(a+(b− a)(n+1)) =

(
1 +

1

n+ 1

)n(
1 +

1

n+ 1
+

1

n

)
.

For part (c), we derive that 1 + 1
n+1 + 1

n > (1 + 1
n+1 )

2 = 1 + 2
n+1 + 1

(n+1)2 . Since n2 + 2n+ 1 > n2 + 2n, we

get (n + 1)2 > n(n + 2), so n+1
n > n+2

n+1 = 1 + 1
n+1 . Dividing by n + 1 gives 1

n > 1
n+1 + 1

(n+1)2 and this last

inequality in fact implies 1 + 1
n+1 + 1

n > 1 + 2
n+1 + 1

(n+1)2 .

Parts (b) and (c) combined give
(
1 + 1

n

)n+1
>
(
1 + 1

n+1

)n+2

, therefore the sequence an =
(
1 + 1

n

)n+1
is

decreasing. From 16.5 (c), we know that the limit is e. We know that e < an for any n ∈ N. Setting n = 2, we
get e < a2 = 27

8 < 3.

Exercise 16.7 We show that every convergent sequence has a monotone subsequence. (In fact, it holds even
that every real sequence has a monotone subsequence which can be concluded using the Bolzano-Weierstrass
theorem.)

Let an → L ∈ R. We say that a statement holds for almost all of the elements of {an} if it holds for all but finitely
many elements. If an = L for almost all n ∈ N, then we have a constant subsequence. If this is not true, then
an > L or an < L holds for infinitely many n. Assume without loss of generality that an > L for infinitely many
n, otherwise consider bn = 2L−an. This means that there is a subsequence af(n) > L. We construct a monotone
subsequence {af◦g(n)} of {af(n)}. Set g(1) = 1. Set g(n + 1) = min{m ∈ N | m > g(n), af(m) < af(g(n))}.
Note that the set in the definition above is not empty since af(m) → L. The sequence {af◦g(n)} is a monotone
decreasing subsequence of {an}.

Exercise 16.8 The nested interval theorem is an important theorem that has generalization in topological spaces,
called the Cantor’s intersection theorem.

Let a sequence of closed intervals [an, bn] be given, where an ≤ bn such that the sequence decreases i.e.
[an+1, bn+1] ⊂ [an, bn]. We need to show that the intersection is not empty, i.e. ∩n∈N[an, bn] 6= ∅. Fur-
thermore, limn→∞{bn − an} = 0 is a necessary and sufficient condition for ∩n∈N[an, bn] containing exactly one
point.

Note that {an} is a non-decreasing sequence bounded above by b1, therefore limn→∞ an = c exists. Fix m ∈ N
and note that an ≤ bm for all n ≥ m, therefore by the squeeze theorem, c ≤ bm for all m ∈ N. By the monotonicity
of {an}, we conclude that am ≤ c for all m ∈ N. Combining these conclusions, we get am ≤ c ≤ bm for all
m ∈ N. This means that c ∈ [am, bm] for all m ∈ N. Therefore also c ∈ ∩m∈N[am, bm].

Now assume in addition that limn→∞ bn − an = 0. Assume that c1, c2 are distinct elements in ∩m∈N[am, bm].
Choosing m so big such that bm − am < |c1 − c2|, we get a contradiction to {c1, c2} ⊂ [am, bm].
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On the other hand, if limn→∞ bn−an 6= 0, there is still a limit limn→∞ bn−an = d > 0 since the sequence {bn−
an} is positive and non-increasing. We know that limn→∞ an = c1 is in ∩m∈N[am, bm]. Similarly limn→∞ bn = c2
exists and is an element of ∩m∈N[am, bm]. Then c2− c1 = limn→∞ bn− limn→∞ an = limn→∞ bn− cn = d > 0,
so c1 6= c2.

Exercise 16.10 Assume that 0 < x ≤ y2 and a0 = y and an = x/an−1+an−1

2 . If x = y2, then an = y =
√
x for

all n.

Let us first show the famous inequality between the geometric and arithmetic means (AM-GM inequality) of
positive real numbers x and y:

√
xy ≤ x+y

2 . Equality holds iff x = y. This easily follows by expanding
0 ≤ (x− y)2 = x2 + y2 − 2xy, therefore 4xy ≤ x2 + y2 + 2xy = (x+ y)2. Dividing by 4 and taking the square
root yields the inequality.

Assume that x < y2. Note an > 0 for all n by induction over n. Using the AM-GM inequality directly for x/an−1
and an−1, we conclude

√
x ≤ an, thus x ≤ a2n for all n. However, if we also use that equality holds if and only if

x/an−1 = an−1, induction over n shows that x < a2n for all n.

The sequence {an} is decreasing since an = x/an−1+an−1

2 = an−1
x/(an−1)

2+1
2 < an−1 which follows by x < a2n−1.

The sequence {an} is decreasing and bounded below by 0, therefore it has a limit L. Taking the limit on both

sides of the equation an = x/an−1+an−1

2 , we get L = x/L+L
2 , so x = L2, i.e. L =

√
x.

For the case that 0 < y2 < x, we can conclude by the AM-GM inequality that
√
x < a1, so we are back to the

previously discussed case.

Similarly, for k > 2, 0 < x, y and a0 = y the sequence an = x/(an−1)
k−1+(k−1)an−1

k converges to x
1
k . The

strategy of the proof is the same, except that we use the generalized AM-GM inequality k
√
x1 · · ·xk ≤ x1+···+xk

k
with equality iff x1 = x2 = · · · = xk.

Remark: This method is very general and called Newton’s method for finding zeros of functions. In these cases,
we applied Newton’s method to the function f(y) = yk − x. However, at this point of the course we lack the
techniques to introduce the method in its general form, but you can look it up somewhere if you are interested.

Exercise 16.14 If an > 0 and an+1

an
< 1, then {an} converges because it is bounded below by 0 and decreasing,

since an+1 < an.

For part (b), assume that limn→∞
an+1

an
= c < 1. The proof is basically the same as for exercise 12.7 from

homework 4.

Fix γ > 0 such that c < γ < 1. We can pick N ∈ N such that for all n ≥ N , we have an+1

an
< γ, i.e. an+1 < γan.

The inequality an+1 < γan holds for any n ≥ N , therefore by iteration, for any k ∈ N, we have

0 < aN+k < γkaN .

By theorem 16.3, we know that limk→∞ γk = 0 because |γ| < 1. Therefore limk→∞ γkaN = 0 and by the
squeeze theorem, we conclude that limk→∞ aN+k = 0, therefore also limn→∞ an = 0.
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