
Suggested solutions for Homework 6

Disclaimer: There might be some typos or mistakes, let me know if you find any. Therefore, double check! The
solutions presented here are more concise than what is expected in quizzes and tests.

Notation: N = {positive integers},N0 = {non-negative integers},Z = {integers},Q = {rational numbers},R =
{real numbers}

Q>0 stands for positive rationals, similarly for Q<0,Q≥0,Q≤0.

X ≈ Y means X and Y are equivalent (they have the same cardinality). For a finite set X, let |X| ∈ N0 be the
number of elements of X.

Exercise 17.1 We show first (iv), (iii), (v) in this order. Note that by Exercise 7.5 we have these identities for

integer valued x, now we need to extend them for x ∈ R. First note that ax =
(
1
a

)−x
holds for any x ∈ R and

a > 0 (not just for 0 < a < 1 as in Definition 17.2), to see this simply apply the definition to 1
a , instead of a.

For (iv) note that a−xax = 1, by (i), and therefore a−x = 1
ax .

For (iii) fix a, b > 1 and x ∈ R and a sequence of rationals rn ↗ x. Then

(ab)x = lim
n
(ab)rn = lim

n
arnbrn = lim

n
arn lim

n
brn = axbx.

If either a = 1, or b = 1, the statement is clear. For 0 < a, b < 1, we have ab < 1, so 1
ab > 1, therefore

(ab)x =

(
1

ab

)−x
=

(
1

a

)−x(
1

b

)−x
= axbx.

For the case a > 1, b < 1 and ab > 1, fix a sequence of rationals rn ↗ x. Then

(ab)x = lim
n
(ab)rn = lim

n
arnbrn = lim

n
arn

(
1

b

)−rn
= lim

n
arn lim

n

(
1

b

)−rn
= ax lim

n

(
1

b

)−rn
,

and we only need to show that limn

(
1
b

)−rn
= bx, however

(
1
b

)−rn
= 1

( 1
b )

rn → 1

( 1
b )

x = 1
b−x . By (iv), we see

that the latter equals bx. Since a and b are interchangeable, we also obtain the case a < 1, b > 1 and ab > 1. It
remains to show the case where ab < 1. Applying the pervious results to 1

ab > 1, we get

(ab)−x =

(
1

ab

)x

=

(
1

a

)x(
1

b

)x

= a−xb−x,

and thus axbx = (ab)x by (i). This concludes the proof of (iii).

For (v), we have by (iii) in the second equality and (iv) in the one before the last equality(a
b

)x
=

(
a
1

b

)x

= ax
(
1

b

)x

= axb−x = ax
1

bx
=
ax

bx
.

Let’s prove (vi), (vii). We know that (vi) holds for x, y ∈ Z by Exercise 7.5 (g). Fix x, y ∈ Q and write them as

x = px

q , y =
py

q for some px < py ∈ Z and q ∈ N. We have apx < apy , therefore (apx)
1
q < (apy )

1
q , therefore

ax < ay. Now fix x < y ∈ R, and p, q ∈ Q such that x < p < q < y. There are rational sequences rn ↗ x
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and sn ↗ y such that rn < x and q < sn, therefore arn < ap < aq < asn . Taking the limit in n, we obtain
ax ≤ ap < aq ≤ ay, proving (vi). The inequality (vii) now follows from (vi) and (i).

Similarly for (viii) and (ix), we already have (viii) for x ∈ N, this generalizes for x ∈ Q>0 as before. For a > 1
and p ∈ Q>0, we have 1 < ap. Fix x > 0 and positive, rational sequence rn ↗ x, then 1 < ar1 ≤ arn and the
right hand side converges to ax, so 1 < ax. Now (viii) follows from (v). The inequality (ix) follows from (viii)
and (i).

We left (ii), the hardest one to the end. We need to show that (ax)y = axy for any a > 0 and x, y ∈ R. We can
conclude this identity for x ∈ R and y ∈ Q by (i) as follows. For positive y, write y = p

q for p, q ∈ N. Then by

(i), (ax)p = ax · ax · · · ax = ax+x+···+x = axp. Again by (i), we can verify that the q’th power of axp/q is axp,
therefore (ax)y = axy. For y ∈ Q<0 use the positive case and (i), for y = 0, the equality is obviously true.

For a > 1, x > 0 and y ∈ R arbitrary, fix an increasing, rational sequence sn ↗ y. Then (ax)sn = axsn , where
the left hand side converges to (ax)y. We need to show that the right hand side converges to axy. This is not just
the definition of real powers because xsn might not be rational. However, there are rational, increasing sequences
rn ↗ xy and r′n ↗ xy such that rn ≤ xsn ≤ r′n. Then by (vi), we have arn ≤ axsn ≤ ar

′
n , where both the

upper and lower bounds converge to axy, therefore by the squeeze theorem axsn → axy. This proves (ii) for the
case of a > 1 and x > 0 and y ∈ R arbitrary.

For the case x > 0 and 0 < a < 1, we can use (v) in the second, the previous case in the third and (iv) and (v)
in the fourth step to conclude

(ax)−y =

(
1

ax

)y

=

((
1

a

)x)y

=

(
1

a

)xy

= a−xy.

Using (i), now we conclude (ax)y = axy in this case.

We are left with the case of negative x. So fix x < 0 and a > 0 and y ∈ R arbitrary. Then using the previous
cases in the second step, we conclude

(ax)y =

((
1

a

)−x)y

=

(
1

a

)−xy
= axy.

Note that in the cases a = 1 or x = 0, both sides are 1, so the identity also holds true in these cases. Now, we
covered all the cases, so we finished the proof of (ii).

Exercise 17.2 Let x ∈ R and rn be a rational sequence such that rn ↘ x. Let a > 1, then by Theorem 17.4
(vi), we know that arn is decreasing and bounded below by ax. Therefore L = limn→∞ arn exists and ax ≤ L.
Without loss of generality (Theorem 17.4 (i)) assume that x = 0 by replacing the sequence rn by sn = rn−x↘ 0.
We want to show that L = 1. Clearly 0 ≤ L ≤ asn . Since sn ↘ 0, for each n ∈ N, there exists an m(n) ∈ N such
that sn ≤ 1

m(n) . Choosing m(n) to be maximal with that property, we see that m(n) is non-decreasing (because

sn is decreasing) and converges to infinity (because sn converges to 0). Therefore 1 ≤ L ≤ asn ≤ a
1

m(n) . Since

m(n) ↗ ∞ as n → ∞, we see that a
1

m(n) → 1, by Theorem 16.4. By the squeeze theorem, we conclude that
L = 1 proving the exercise for the case a > 1. For a = 1, the statement is clear. For 0 < a < 1, we we see that

arn =
(
1
a

)−rn
= 1

( 1
a )

rn converges to 1

( 1
a )

x = ax.

Exercise 17.3 Similarly, as in the last sentence of the solution to Exercise 17.2, we can show that arn → ax

if for the rational sequence rn, we have rn ↗ x and 0 < a < 1. In conclusion, for any monotone, rational
sequence rn → x and a > 0, we have limn a

rn = ax. Taking an arbitrary rational sequence rn → x, there exists
increasing, rational sn ↗ x and decreasing, rational s′n ↘ x such that sn ≤ rn ≤ s′n. Then in the case a > 1
we have by theorem 17.4 that asn ≤ arn ≤ as

′
n . Both the upper and lower bounds converge to ax, so by the

squeeze theorem, we have limn a
rn = ax. Similarly, for 0 < a < 1, we have as

′
n ≤ arn ≤ asn and the conclusion

limn a
rn = ax follows by the squeeze theorem.

Exercise 18.1 The sequence an = n has no convergent subsequence, since for any subsequence {ank
}, we have

ank
≥ k, thus diverges to +∞.
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Exercise 18.2 In Exercise 16.7 from homework 5, we showed that every convergent sequence has a monotone
subsequence.

Let us distinguish the cases {an} is bounded and {an} is not bounded. If {an} is bounded, it has a convergent
subsequence {ank

} by Bolzano-Weierstrass. By Exercise 16.7, {ank
} has monotone subsequence, which is a

monotone subsequence of {an}.

If {an} not bounded, than it is either not bounded below, or not bounded above. Assume that {an} is not
bounded above. Then we can construct a monotone increasing subsequence {bn} as follows. Set b1 = a1. Since
{an} is not bounded above by a1, there is a n2 ∈ N such that an2

> a1. Let b2 = an2
. Assume that the b1 <

b2 < · · · < bm = anm are already constructed. But since {an} is not bounded by M = max(a1, a2, · · · , anm),
there exists an nm+1 ∈ N such that anm+1 > M ≥ bm. Now set bm+1 = anm+1 .

If {an} is not bounded below, then {−an} is not bounded above and it has an increasing subsequence {bn}.
Then {−bn} is a decreasing subsequence of {an}.

Exercise 18.3 Assume that every convergent subsequence of the bounded sequence {an} converges to L. We
need to show that {an} converges to L. By Bolzano-Weierstrass, {an} has a convergent subsequence ank

→ L.
Now assume that an 6→ L. Then there exists an ε > 0 and infinitely many n ∈ N such that |an − L| ≥ ε.
Then there are infinitely many n such that L + ε ≤ an, or there are infinitely many n such that an ≤ L − ε.
Assume that the former is true (the other case is similar). From those infinitely many L+ ε ≤ an, we can build a
subsequence {bn} of {an} such that L+ ε ≤ bn. Note that {bn} is bounded, since it is a subsequence of {an}.
Now, by Bolzano-Weierstrass, {bn} has a convergent subsequence {bnj

}. However, since L + ε ≤ bnj
, we have

that L+ ε ≤ limj→∞ bnj
. Note that {bnj

} is a convergent subsequence of {an} with limit different from L. This
is contradiction, and therefore {an} converges to L.

3


