
Suggested solutions for Homework 7

Disclaimer: There might be some typos or mistakes, let me know if you find any. Therefore, double check! The
solutions presented here are more concise than what is expected in quizzes and tests.

Notation: N = {positive integers},N0 = {non-negative integers},Z = {integers},Q = {rational numbers},R =
{real numbers}

Q>0 stands for positive rationals, similarly for Q<0,Q≥0,Q≤0.

X ≈ Y means X and Y are equivalent (they have the same cardinality). For a finite set X, let |X| ∈ N0 be the
number of elements of X.

Exercise 19.1 Let an, bn be Cauchy. Fix ε > 0. We have |an + bn − (am + bm)| = |(an − am) + (bn − bm)| ≤
|an−am|+|bn−bm|. Choosing N so big such that for all n,m ≥ N , we have |an−am| < ε/2 and |bn−bm| < ε/2,
we also have |an + bn − (am + bm)| ≤ ε. Hence {an + bn} is also Cauchy.

For c 6= 0, we choose N so big such that |an − am| < ε/|c| for all n,m ≥ N , gives that |can − cam| =
|c||an − am| < ε for all n,m ≥ N . Consequently, {can} is Cauchy. (For c = 0 this is obvious.)

For {anbn} note that |an| ≤ A and |bn| ≤ B are bounded since they are Cauchy. Now writing |anbn − ambm| =
|anbn − ambn + ambn − ambm| ≤ |anbn − ambn| + |ambn − ambm| = |bn| |an − am| + |am| |bn − bm| ≤
B |an − am| + A |bn − bm|. Choosing N so big such that for all n,m ≥ N we have |an − am| < ε

2B and
|bn − bm| < ε

2A , we also have |anbn − ambm| < ε. Consequently, {anbn} is Cauchy.

The sequence {an − bn} is Cauchy because {−bn} is Cauchy and therefore {an + (−bn)} is also Cauchy.

Exercise 19.3 We can conclude that |a3−a2| = |f(a2)−f(a1)| ≤ α|a2−a1|. Also |a4−a3| = |f(a3)−f(a2)| ≤
α|a3 − a2|. Combining these inequalities, we have |a4 − a3| ≤ α2|a2 − a1|. Proceeding like this, we see that
|an+1−an| ≤ αn−1|a2−a1|. Denote d = |a2−a1| and assume d 6= 0 (otherwise the statement is obviously true)

also fix positive integers n < m. We have the following telescoping sum am−an =
∑m−n−1
k=0 an+k+1−an+k, and

therefore by the triangular inequality in the first step, the conclusion from above in the second, and the identity∑n
k=0 γ

k = 1−γn+1

1−γ for γ 6= 0 in the third, we get

|am − an| ≤
m−n−1∑
k=0

|an+k+1 − an+k| ≤ d
m−n−1∑
k=0

αn+k−1 = dαn−1
1− αm−n

1− α
≤ αn−1d 1

1− α
.

In the last step, we used that the sequence
{

1−αm−n

1−α

}
m

is increasing with limit 1
1−α , that is true, since α ∈ [0, 1).

Fix ε > 0. For the same reason as before limn α
n−1 = 0, and therefore we can take N to be so big such that

αn−1 < 1−α
d ε for all n ≥ N . This means that for any m > n ≥ N , we have |am − an| < ε. But then it should

also hold for arbitrary m,n ≥ N , which proves that {an} is a Cauchy sequence.

Exercise 20.6 Since 1
n → 0, we have lim sup 1

n = lim inf 1
n = 0. Similarly

(
1 + 1

n

)n → e, therefore the limes
superior equals the limes inferior equals the limit e.

For the sequence an = (−1)n(1− 1
n ) note that 1− 1

n → 1. Since a convergent subsequence ank
is Cauchy, either

all but finitely many of it’s elements are of the form a2n or all but finitely many of it’s elements are of the form
a2n−1. In the first case limk ank

= limn a2n = 1, in the second limk ank
= limn a2n−1 = −1. This means that

the set of accumulations points La = {1,−1}. Therefore lim infn an = −1 and lim supn an = 1.

Exercise 20.7 Let an be an enumeration of [0, 1] ∩ Q. This is to say that a : N → [0, 1] ∩ Q, n 7→ an is a
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bijection. We have 0 ≤ an ≤ 1. Therefore, 0 ≤ lim infn an and lim supn an ≤ 1. We show that these inequalities
are in fact equalities. We only show lim supn an = 1, the limes inferior is similar. Assume L = lim supn an < 1.
By Theorem 20.3, there are at most finitely many n such that an ≥ L+ 1−L

2 = L+1
2 . However there are infinitely

many rational numbers in the interval
[
L+1
2 , 1

]
, which contradicts that a is onto [0, 1] ∩Q.

Exercise 20.8 We need to show that {supLa, inf La} ⊂ La, i.e. the set La contains both its supremum and
infimum. We only show it for supLa, the infimum is similar. By Theorem 20.3 we know that for any ε > 0
there are infinitely many n such that L − ε < an. Therefore we can build a subsequence {bk} of {an} such
that L − 1

k < bk as follows. Set b1 to be such that L − 1 < b1. Now assume that b1, . . . , bk = ank
are already

constructed. Since there are infinitely n such that L− 1
k+1 < an, choose nk+1 to be such an n which is greater

than nk, i.e. nk < nk+1. Now set bk = ank
.

Fix ε > 0 and K ∈ N such that 1
K < ε. The sequence {bk} has the property that for any k ≥ K, we have that

L− 1
K < bk. However, by Theorem 20.3 there exists a N such that an < L+ 1

K for all n ≥ N . This also means
that there exists a K ′ such that for all k ≥ K ′, we have bk < L+ 1

K . Now setting K ′′ = max{K,K ′}, we have
that L− 1

K < bk < L+ 1
K for all k ≥ K ′′. Therefore |L− bk| < ε for all k ≥ K ′′, in other words limk bk = L.

In conclusion L ∈ La, this is what we wanted to show.

Exercise 20.9 This is the same as Exercise 18.3 form homework 6. We can give a shorter proof using limes
inferior, limes superior. By Bolzano-Weierstrass and the assumption, we have La = {L}. Therefore, lim infn an =
lim supn an = L. By Theorem 20.4 (ii), the sequence {an} converges and has limit L.

Exercise 20.10 The sequence an = (−1)n diverges but a1+···+an
n converges to zero. This is because the sequence

bn = a1 + a2 + · · ·+ an is bounded by 1, i.e. |bn| ≤ 1. Therefore
∣∣a1+···+an

n

∣∣ ≤ 1
n . By the squeeze theorem the

sequence
∣∣a1+···+an

n

∣∣ converges to 0, hence a1+···+an
n also converges to 0.

Exercise 20.20 Let 0 < an → L, we need to prove that (a1 · · · an)
1
n → L.

First we show that for any a > 0 there is a unique real r such that 2r = a. We will call this r the base-2 logarithm
of a and write r = log2 a.

Let r = sup{x ∈ R : 2x ≤ a}, with the set S = {x ∈ R : 2x ≤ a} which is not empty since 2−n = 1
2n → 0. By

Exercise 17.3 from homework 6, we have that 2r ≤ a. Assume that 2r < a. For n ∈ N, we have by Theorem
17.4 (i) that 2r+

1
n = 2r 2

1
n . Not that 1 < 2

1
n → 1 by Theorem 16.4.. Choosing n so big such that 2

1
n < a

2r , we

obtain that 2r+
1
n = 2r2

1
n < a which is contradiction. Uniqueness follows form Theorem 17.4 (vi).

From Theorem 17.4 (i) we have for a, b > 0 that log2(ab) = log2 a + log2 b and from (ii) is easy to check that
for a > 0 and x ∈ R, we have log2 a

x = x log2 a.

Let us show that an → L if and only if log2 an → log2 L. If log2 an → log2 L, then we know by Exercise 17.3 that
2log2 an → 2log2 L which is the same as an → L. Now assume that bn = log2 an doesn’t converge to M = log2 L.
Then (as in the solution of Exercise 18.3) there exists ε > 0 such that there are infinitely many n such that
bn ≥ M + ε or there are infinitely many n such that bn ≤ M − ε. In the first case an = 2bn ≥ 2M2ε = L2ε

for infinitely many n which contradicts an → L. Similarly, for the second case an = 2bn ≤ 2M2−ε = L2−ε for
infinitely many n which again contradicts an → L.

Now we show that log2(a1 · · · an)
1
n → log2 L. Using the identities above log2(a1 · · · an)

1
n = log2 a1+···+log2 an

n .

Using Theorem 20.7 and that log2 an → log2 L, we have that log2(a1 · · · an)
1
n → log2 L. As we showed before,

this implies that (a1 · · · an)
1
n → L.

Exercise 20.22 Let bn → L. We show that a2n
2n and a2n+1

2n+1 both converge to zero that implies an
n → 0.

We build the sum b2 + · · ·+ bn+1 = a1 + 2(a2 + · · ·+ an) + an+1. This means that an+1 = b2 + · · ·+ bn+1 −
a1 − 2(a2 + . . . an). Dividing by n gives

an+1

n
=
b2 + · · ·+ bn+1

n
− 2

a2 + · · ·+ an
n

− a1
n
.

We know by Theorem 20.7 that b2+···+bn+1

n → L and we also know that a1
n → 0. If n is odd, then a2+ · · ·+an =
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b3 + b5 + · · ·+ bn and by Theorem 20.7 we know that

b3 + b5 + · · ·+ bn
(n− 1)/2

→ L,

therefore also 2a2+···+ann = 2 b3+b5+···+bnn = n−1
n

b3+b5+···+bn
(n−1)/2 → L proving that a2m

2m−1 → 0 (here the even

number n+ 1 = 2m) which in turn implies that a2m
2m = 2m−1

2m
a2m
2m−1 → 0.

Now we consider the shifted sequence {an+1}. Defining b̃n+1 = an+1 + an+2, we know that b̃n → L. However,
the derivation above gives that a2n+1

2n → 0, which implies a2n+1

2n+1 → 0.

Exercise 21.2 For (a), an = (−1)n and we have An = 1, and Bn = −1. For (b), an = 1
n and we have

An = 1
n → 0 and Bn = 0. For (c), an =

(
1 + 1

n

)n
and An = e and Bn =

(
1 + 1

n

)n
.

For (d), an = (−1)n
n and A2n = 1

2n , A2n+1 = 1
2n+2 , B2n+1 = −1

2n+1 , B2n = −1
2n+1 . Therefore limnAn =

limnBn = 0.

For (e), we have an = (−1)n
(
1− 1

n

)
. Note that {a2n} is increasing and positive, and {a2n−1} is decreasing and

non positive. Therefore An = sup{a2m|m ∈ N, 2m ≥ n} = limn a2n = 1 and Bn = inf{a2m−1|m ∈ N, 2m−1 ≥
n} = limn a2n−1 = −1.
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