
Suggested solutions for Homework 8

Disclaimer: There might be some typos or mistakes, let me know if you find any. Therefore, double check! The
solutions presented here are more concise than what is expected in quizzes and tests.

Notation: N = {positive integers},N0 = {non-negative integers},Z = {integers},Q = {rational numbers},R =
{real numbers} Q>0 stands for positive rationals, similarly for Q<0,Q≥0,Q≤0.

X ≈ Y means X and Y are equivalent (they have the same cardinality). For a finite set X, let |X| ∈ N0 be the
number of elements of X.

Exercise 22.1 The sequences (−1)n and n2

n+1 are not convergent to 0. By theorem 22.3 the series
∑∞

n=1(−1)n

and
∑∞

n=1
n2

n+1 are divergent.

Exercise 22.4 Using that an = 1
n(n+1) =

1
n−

1
n+1 , we see that sn = a1+a2+ · · ·+an = 1− 1

n+1 is a telescoping

sum. Since sn → 1, the series
∑∞

n=1 an is convergent with limit 1.

Exercise 22.5 Using that an = n
(n+1)! =

n+1
(n+1)! −

1
(n+1)! =

1
n! −

1
(n+1)! , we see that sn = a1 + a2 + · · ·+ an =

1− 1
(n+1)! is a telescoping sum with limit 1. Therefore the series

∑∞
n=1 an is convergent with limit 1.

Exercise 22.7 Assume that an = bn for n ≥ N and
∑∞

n=1 an is convergent. Then we have for n ≥ N that
sn = b1+ b2+ · · · bn = a1+a2+ · · ·+an− (a1+a2+ · · ·+aN−1)+ (b1+ b2+ · · ·+ bN−1). Now, we see that as
n→∞, the sequence sn converges to

∑∞
k=1 an−(a1+a2+ · · ·+aN−1)+(b1+b2+ · · ·+bN−1) = L−(a1+a2+

· · ·+aN−1)+ (b1+ b2+ · · ·+ bN−1). Therefore,
∑∞

k=1 bn = L− (a1+a2+ · · ·+aN−1)+ (b1+ b2+ · · ·+ bN−1)
is a convergent series.

Exercise 23.4 Assume for the sake of contradiction that
∑∞

n=1 an + bn converges. By theorem 23.1, also∑∞
n=1 an + bn − an converges. However the latter equals to

∑∞
n=1 bn which doesn’t converge, and this leads to

a contradiction.

Exercise 23.5 One example is an = (−1)n, bn = (−1)n+1, then an + bn = 0, therefore
∑∞

n=1 an + bn converges
to 0, however

∑∞
n=1 an and

∑∞
n=1 bn diverge, since an and bn does not converge to zero.

Another example is an = n, bn = −n. Then an + bn = 0, therefore
∑∞

n=1 an + bn converges to 0, however∑∞
n=1 an and

∑∞
n=1 bn diverge, since an and bn does not converge to zero.

Exercise 24.2 In part (a), we apply the 2n test, which says that
∑∞

n=2
1

nL(n) converges if and only if
∑∞

n=2
2n

2nL(2n)

converges. The latter simplifies to
∑∞

n=2
1

nL(2) = 1
L(2)

∑∞
n=2

1
n which diverges to +∞ by the example in the

book. The divergence of the harmonic series
∑∞

n=1
1
n is a very important fact.

For part (b) note that the 1
nL(n) ≤

1
L(n) for all n ≥ 2 and both sides are positive. The series

∑∞
n=2

1
nL(n) diverges

to +∞, by part (a), therefore
∑∞

n=2
1

L(n) diverges as well.

Exercise 24.5 Since the sequence an is non negative, for any k we have that we an1
+an2

+ · · ·+ank
≤ a1+a2+

· · ·+ank
. The right hand side converges to some limit 0 ≤ L as k →∞. Therefore sk = an1

+an2
+· · ·+ank

≤ L
for any k. The sequence of partial sums sk is increasing and bounded from above by L. Therefore it is convergent
with some limit L′ ≤ L.

Exercise 24.7 Let bn > 0 and an ≥ 0 such that
∑∞

n=1 bn converges and {an

bn
} is decreasing. Then for any

n, we have an

bn
≤ a1

b1
, since {an

bn
} is decreasing. Therefore, an ≤ a1

b1
bn, where both sides of the inequality are

non-negative. Therefore, the increasing sequence sn = a1 + ·+ an is bounded above by a1

b1

∑∞
n=1 bn <∞, thus

sn converges to some limit L ≤ a1

b1

∑∞
n=1 bn.

1


