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Abstract

We define enumerated point processes of hard spheres that are locally close to some 3D
rigid lattice and show that they exhibit long-range orientational order. We also define two-
dimensional Gibbsian point processes by a local, geometry dependent Hamiltonian on hard
disks that are supported on near triangular lattice configurations. Earlier results about ex-
istence of long-range orientational order carry over and we obtain the existence of infinite-
volume Gibbs measures on two-dimensional point configurations that follow the orientation
of a fixed triangular lattice arbitrary closely.
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1 Introduction

In the previous work [5], we considered hard disk processes with disks of radius 1/2 that have the
structure of a triangular lattice and neighboring disks have an upper bound on their distance.
We showed the existence of a natural ”uniform” measures on these allowed configurations that
exhibit uniform long-range orientational order. In the first half of this work, we show that the
same arguments apply to some three-dimensional lattices. In the second half, we show that the
result in the two-dimensional case can be formulated independently of an underlying triangular
lattice structure that was explicitly present in the definition of the probability measures in [5].
We only require the local, geometry dependent condition that every point has exactly six points
in an annulus with radii 1 and 1+α around them. We will have the parameter α in both sections
that gives the maximal distance of neighboring points. This α needs to be sufficiently small so
that some local conditions are fulfilled, however it is on the macroscopic order of about 1/2, so
not particularly small. Fluctuations from the orientation of a fixed lattice however can be made
arbitrary small, in particular they can be made many orders smaller than α.

Similar but not hard-core models were considered in [11] without defects and in [8] and [2]
with lattice defects. Introducing bounded, separated missing regions as defects into our two-
dimensional model is possible using similar techniques as in [8]. For three-dimensions, we think it
is possible but we haven’t carried it out. Also the techniques of section 3 can possibly carried out
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in three-dimension, but an analogue of Lemma 3.5 is required together with considering boundary
conditions, since in three-dimensions several close-packed lattices are possible analogues of the
triangular lattice.

These simplified models with well defined lattice structure and possible defects are motivated
by more natural hard sphere models defined with respect to a Poisson point process at a given
intensity z > 0. The set of Gibbs measures for these natural models is defined similarly to our
definition of Gz in section 3. They are basically sequential limits of Poisson point processes in
bounded domains – as the domains tend to Rd – conditioned that no pair of points have distance
smaller than one. In these natural models, instead of imposing complex geometry dependent
interactions, merely hard-core repulsion is required. As a consequence, even at high intensity, all
kind of possible lattice defects emerge as soon as the domain gets large enough. It is believed
that in dimensions two and greater there are multiple Gibbs measures in Gz for high enough
intensity z. Their structure is believed to differ in the typical relative orientation of nearby
points. It is shown in [12] that in dimension two any of these measures in Gz are translational
invariant at any intensity z > 0, and in [13] a logarithmic lower bound is given on the mean square
translational displacement of particles. These results prevent Gibbs measures from having long-
range positional order. One strategy of showing that Gz is not a singleton in d ≥ 2 and z > 0 high
enough, is the search for a measure in Gz that is not rotational invariant. Existence of such is
called the breaking of rotational symmetry (of the energy function). Showing that such measure
is supported on a perturbed lattice structure with long-range orientational order would be an
even stronger result which is connected to the widely studied crystallization problem, even if the
crystallization problem is mostly studied for different interactions.

We’d also like to mention the recent result [9] that at low intensity disagreement percolation
results imply the uniqueness of the Gibbs state. While at high intensity it is shown in [1] that
hard disks percolate with the percolation radius chosen sufficiently big. Percolation is necessary
for crystallization, but to our knowledge breaking of rotational symmetry cannot be concluded
from it.

2 The three-dimensional enumerated model

In this section we show that the arguments of [5] can be applied to some three-dimensional lattices
to obtain similar results as in [5] about long-range orientational order for random perturbations
of such lattices.

2.1 Configuration space

We consider three-dimensional lattices with well defined distance between nearest neighbors (to
be normalized to 1) that fulfill two conditions. Firstly the lattice has to be rigid, meaning that
the nearest neighbor edges define a tessellation of R3 by rigid, convex polyhedra like tetrahedra
or octahedra. Secondly, the lattice has to be translational invariant in three linearly independent
directions.

Examples of such lattices are the face-centered cubic lattice and the hexagonal close-packed
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lattice. For definitions see [10]. Note that being translational invariant doesn’t mean that the
lattice has to be a Bravais lattice, i.e. of the form Zn1 + Zn2 + Zn3 for some vectors ni ∈
R3. Bravais lattices are translational invariant but a union of Bravais lattices might be still
translational invariant, however not a Bravais lattice anymore for which the hexagonal close-
packed lattice serves as examples.

Let the set I ⊂ R3 denote one of the lattices that fulfill both criteria. We assume 0 ∈ I and think
of I as an index set which is going to be used to parametrize countable point configurations in
R3. Let I have translational symmetry by the linearly independent vectors t1, t2, t3 ∈ R3 and
define the set T = Zt1 +Zt2 +Zt3. Define the quotient space In := I/nT . We will think of In as
a specific set of representatives in the half-open parallelepiped Un spanned by nt1, nt2, nt3, i.e.
Un = n{xt1 + yt2 + zt3 | x, y, z ∈ [0, 1)}.

A parametrized point configuration in R3 is a map ω : I → R2, x 7→ ω(x) that determines the
point configuration {ω(x) | x ∈ I} ⊂ R3. For the set of all parametrized point configurations we
introduce the character Ω = {ω : I → R2}. Note that a single point configuration {ω(x) | x ∈ I} ⊂
can be parametrized by many different ω ∈ Ω.

Let α ∈ (0, 1] be an arbitrary but fixed real to be fixed later. An n-periodic parametrized point
configuration with edge length l ∈ (1, 1 +α) is a parametrized configuration ω which satisfies the
boundary conditions:

ω(x+ nti) = ω(x) + lnti for all x ∈ I and i ∈ {1, 2, 3}. (2.1)

The set of N -periodic parametrized configurations with edge length l is denoted by Ωper
n,l ⊂ Ω.

From now on we will omit the word parametrized because, in this section, we are going to
work solely with point configurations which are parametrized by I. An n-periodic configuration
is uniquely determined by its values on In. Therefore, we identify n-periodic configurations
ω ∈ Ωper

n,l with functions ω : In → R2.

The bond set E ⊂ I × I contains index-pairs with Euclidean distance one; this is E = {(x, y) ∈
I × I | |x − y| = 1}. We set En = E/nT , we can think of En as a bond set En ⊂ In × In. Let
T denote the set of convex, rigid polyhedra whose edges are in E and provide a tessellation of
R3, which is the Delaunay pre-triangulation, see [10]. Define Tn = T /nT . Each 4 ∈ T can be
triangulated into tetrahedra (not necessarily uniquely), let us fix such a T -periodic triangulation
of T . The set of all (necessarily not all regular) tetrahedra created this way define a tessellation
of R3 and is denoted by triang(T ). We define triang(Tn) := triang(T )/nT .

2.2 Probability space

By definitions of Ω and Ωper
n,l , we have Ω = (R3)I and can identify Ωper

n,l = (R3)In . Both sets are

endowed with the corresponding product σ-algebras F =
⊗

x∈I B(R3) and Fn =
⊗

x∈In B(R3)
where B(R3) denotes the Borel σ-algebra on each factor. The event of admissible N-periodic
configurations Ωn,l ⊂ Ωper

n,l is defined by the properties (Ω1)− (Ω4):

(Ω1) |ω(x)− ω(y)| ∈ (1, 1 + α) for all (x, y) ∈ E.

For ω ∈ Ω we define the extension ω̂ : R3 → R3 such that ω̂(x) = ω(x) if x ∈ I. On the closure
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of a tetrahedron 4 ∈ triang(T ), the map ω̂ is defined to be the unique affine linear extension of
the mapping defined on the corners of that tetrahedron.

(Ω2) The map ω̂ : R3 → R3 is bijective.

(Ω3) The map ω̂ is almost everywhere orientation preserving, this is to say that det(∇ω̂(x)) > 0
for almost every x ∈ R3 with the Jacobian ∇ω̂ : R3 → R3×3.

(Ω4) The image ω̂(4) of a polyhedron 4 ∈ T is a convex polyhedron.

Define the set of admissible N -periodic configurations, with edge length l as

Ωn,l = {ω ∈ Ωper
n,l | ω satisfies (Ω1)− (Ω4)}.

The set Ωn,l is open and non-empty subsets of (R3)IN and (R3)I respectively. The scaled lattice
ωl(x) = lx for x ∈ I and 1 < l < 1 + α is an element of Ωn,l.

Clearly, 0 < δ0⊗λIn\{0}(Ωn,l) <∞ with the Lebesgue measure λ on R3 and the Dirac measure δ0

in 0 ∈ R3. The lower bound holds because Ω0
n,l is non-empty and open in (R3)In\{0}; the upper

bound is a consequence of the parameter α in (Ω1). Let the probability measure Pn,l be

Pn,l(A) =
δ0 ⊗ λIn\{0}(Ωn,l ∩A)

δ0 ⊗ λIn\{0}(Ωn,l)

for any Borel measurable set A ∈ Fn, thus Pn,l is the uniform distribution on the set Ωn,l with
respect to the reference measure δ0 ⊗ λIn\{0}. The first factor in this product refers to the
component ω(0) of ω ∈ Ω.

2.3 Result

We have the following finite-volume result.

Theorem 2.1. For α sufficiently small one has

lim
l↓1

sup
N∈N

sup
4∈triang(Tn)

EPn,l [ |∇ω̂(4)− Id|2 ] = 0 (2.2)

with the constant value of the Jacobian ∇ω̂(4) on the tetrahedron 4 from the triangulation of
Tn and some norm | · | on R3×3.

The central argument is going to be the following rigidity theorem from [4, Theorem 3.1].

Theorem 2.2 (Friesecke, James and Müller). Let U be a bounded Lipschitz domain in Rd, d ≥ 2.
There exists a constant C(U) with the following property: For each v ∈ W 1,2(U,Rd) there is an
associated rotation R ∈ SO(d) such that

||∇v −R||L2(U) ≤ C(U)||dist(∇v,SO(d))||L2(U).
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This is a generalization of Liouville’s theorem, which states that a map is necessarily a rotation
whose Jacobian is a rotation in every point of its domain. We are going to set v = ω̂|Un and
U = Un which is a bounded Lipschitz domain. The function ω̂|Un is linear on each triangle4 ∈ Tn,
thus piecewise affine linear on Un. As a consequence, ω̂|Un belongs to the class W 1,2(Un,R3).
The following remark, which also appears in [4] at the end of Section 3, is essential to achieve
uniformity in Theorem 2.2 in the parameter n.

Remark 2.3. The constant C(U) in Theorem 2.2 is invariant under scaling: C(γU) = C(U) for
all γ > 0. Indeed, setting vγ(γx) = γv(x) for x ∈ U , we have ∇vγ(γx) = ∇v(x) and hence ||∇vγ−
R||L2(γU) = γd/2||∇v − R||L2(U) and ||dist(∇vγ , SO(d))||L2(γU) = γd/2||dist(∇v,SO(d))||L2(U).
This implies that for the domains Un (n ≥ 1), the corresponding constant C(Un) can be chosen
independently of n.

2.4 Proofs

We are going to show that the L2-distance of the Jacobian ∇ω̂ from the scaled identity matrix
on Un can be controlled by the difference of the areas of ω̂(Un) and Un. Because of the periodic
boundary conditions, λ(ω̂(Un)) does not depend on configurations ω with (Ω2), thus it provides
a suitable uniform control on the set Ωn,l. Then we show that the expected square distance of
∇ω̂ from the scaled identity matrix can be controlled by the the expected square deviation of the
rigid polyhedra’s edge lengths from one. The one should be associated with the lattice constant
of the unscaled lattice.

The following lemmas 2.3 and 2.4 from [10] provide the desired estimate on tetrahedra and
octahedra. They state that tetrahedra and octahedra are rigid, meaning that the distance from
SO(3) of a piecewise affine linear map defined on the rigid polyhedron can be controlled by terms
that measure how the map deforms the edge lengths of a rigid polyhedron. Although any rigid
polyhedron might be used to extend results in this paper, we will only consider tetrahedra and
octahedra in detail. Let |M | =

√
tr(M tM) denote the Frobenius norm of a matrix M ∈ R3×3

and |w| the Euclidean norm of w ∈ R3.

Lemma 2.4 ([10] Lemma 3.2.). There is a positive constant C1 such that, for all linear maps

A : R3 → R3 with det(A) > 0 and w1 = (1, 0, 0), w2 = (1
2 ,
√

3
2 , 0), w3 = w2−w1, w4 = (1

2 ,
√

3
6 ,
√

6
3 ),

w5 = w4 − w2, w6 = w4 − w1 and l ≥ 1, the following inequality holds:

dist2 (A , SO(3)) := inf
R∈SO(3)

|A−R|2 ≤ C1

6∑
i=1

(|Awi| − 1)2. (2.3)

A similar theorem holds for octahedra. Let O denote an octahedron with vertices Pi, i ∈
{1, . . . , 6}, and edges PiPj for i 6= j (mod 3).

Lemma 2.5 ([10] Lemma 3.4.). There is a constant C2 > 0 such that

dist2 (∇u , SO(3)) ≤ C2

∑
i 6=j (mod 3)

(|u(PiPj)| − 1)2 almost everywhere in O, (2.4)

for every u ∈ C0(O;R3) such that u is piecewise affine with respect to the triangulation determined
by cutting O along the diagonal P1P4, det(∇u) > 0 a.e. in O, and u(O) is convex.
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Now, we prove the mentioned estimate, which provides control over the L2-distance of ∇ω̂ from
the scaled identity matrix in terms of the edge length deviations.

Lemma 2.6. For a polyhedron 4 ∈ T , let E(4) denote the set of edges of 4. There is a constant
c > 0 such that for all n ≥ 1 and 1 < l < 1 + α, the inequality

|| ∇ω̂ − l Id ||2L2(Un) ≤ c
∑
4∈Tn

∑
{x,y}∈E(4)

(|ω(x)− ω(y)| − 1)2 (2.5)

holds for all ω ∈ Ωn,l, and hence

EPn,l [ || ∇ω̂ − l Id ||2L2(Un) ] ≤ c
∑
4∈Tn

∑
{x,y}∈E(4)

EPn,l [ (|ω(x)− ω(y)| − 1)2 ] (2.6)

where the L2-norm is defined with respect to the scalar product on R3×3 that induces the Frobenius
norm, and | · | denotes the Euclidean norm on R3.

Note that the right side in equation (2.5) is strictly positive because of the boundary conditions
(3.1) and because l > 1, whereas the left is zero for ω = ωl ∈ Ωper

n,l . Since the measure Pn,l is
supported on the set Ωn,l, (2.6) follows from (2.5). Also note that c does not depend on n.

Proof. Let ω ∈ Ωn,l and E(4) be the set of edges of a polyhedron 4 ∈ Tn. By Lemma 2.4 and
Lemma 2.5 we conclude that on every polyhedron 4 ∈ Tn, we have

dist2 (∇ω̂|4, SO(3)) ≤ max{C1, C2}
∑

{x,y}∈E(4)

(|ω(x)− ω(y)| − 1)2

where we used (Ω1), (Ω3) and (Ω4) to apply lemmas 2.4 and 2.5 and with the constants C1, C2

from lemmas 2.4 and 2.5. Orthogonality of functions which are non-zero only on disjoint polyhedra
gives

|| dist(∇ω̂,SO(3)) ||2L2(Un) ≤ C
∑
4∈TN

∑
{x,y}∈E(4)

(|ω(x)− ω(y)| − 1)2

with constant C = max{C1, C2}max{
√

2/12,
√

2/3} where the second factor is the maximum
the volume of a regular tetrahedron and octahedron. Applying Theorem 2.2 about geometric
rigidity, we find an R(ω) ∈ SO(3) such that

|| ∇ω̂ −R(ω) ||2L2(Un) ≤ K || dist(∇ω̂,SO(3)) ||2L2(Un),

with a constant K > 0 that does not depend on n by Remark 2.3. Due to the periodic boundary
conditions (3.1), the function ω̂ − l Id is n-periodic in the directions t1, t2, t3, this is to say
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ω̂(x+ nti)− l(x+ nti) = ω̂(x)− lx for all x ∈ R3 and i ∈ {1, 2, 3}. (2.7)

By the fundamental theorem of calculus, the gradient of a periodic function is orthogonal to any
constant function, and therefore

|| ∇ω̂ − l Id ||2L2(UN ) + || l Id−R(ω) ||2L2(Un) = || ∇ω̂ −R(ω) ||2L2(Un)

by Pythagoras. Since Pn,l is supported on the set Ωn,l, the lemma is established with c = CK.

With Lemma 2.6 we can now prove Theorem 2.1.

Proof of Theorem 2.1. A generalization of Heron’s formula for tetrahedra gives the volume λ(4)
of the tetrahedron 4 with edge lengths u, v, w, U, V,W (opposite edges denoted with the same
letter, lower case and capital)

λ(4) =

√
(−a+ b+ c+ d)(a− b+ c+ d)(a+ b− c+ d)(a+ b+ c− d)

192 uvw
(2.8)

with

X = (w − U + v)(U + v + w) a =
√
xY Z

x = (U − v + w)(v − w + U) b =
√
yZX

Y = (u− V + w)(V + w + u) c =
√
zXY

y = (V − w + u)(w − u+ V ) d =
√
xyz

y = (V − w + u)(w − u+ V )

Z = (v −W + u)(W + u+ v)

z = (W − u+ v)(u− v +W ).

By first order Taylor approximation of (2.8) at the regular tetrahedron 41, denoting the edge
lengths ai, i ∈ {1, . . . , 6} we obtain

λ(4)− λ(41) =
1

12
√

2

6∑
i=1

(ai − 1) + o

(
6∑
i=1

|ai − 1|

)
as ai → 1 for all i.

For the octahedron, we obtain 1
6
√

2
for the volume derivative in one edge b1 at b1 = 1 and the

remaining 11 edges fixed at bi = 1. This can be achieved by dividing the octahedron into 4
tetrahedrons that all have a common edge d that is a diagonal of the octahedron adjacent to x.
Using the formula (2.8) and some elementary geometry of a trapezoid to see that d =

√
x+ 1,

we obtain with the regular octahedron 81 with edge length 1:

λ(8)− λ(81) =
1

6
√

2

12∑
i=1

(bi − 1) + o

(
12∑
i=1

|bi − 1|

)
as bi → 1 for all i.
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We only need that the partial derivatives of the volume at41 and 81 are positive. By continuity,
in a small neighborhood of the regular polyhedra, increasing one edge length, increases the volume.
Therefore we can choose α > 0 from the definition of allowed configurations so small such that
the polyhedra of the tessellation obtain minimal volume as the edge lengths go to 1. We choose
c1 > 12

√
2 and a corresponding α > 0 so small that the inequalities

6∑
i=1

(ai − 1) ≤ c1(λ(4)− λ(41))

12∑
i=1

(bi − 1) ≤ c1(λ(8)− λ(81)) (2.9)

are satisfied whenever 1 < ai < 1 + α and 1 < bi < 1 + α. Let us fix such c1 > 0 and α > 0
and assume that Ωper

n,l is defined by means of this α. Using (2.9) we can also estimate the squared
edge length deviations:

6∑
i=1

(ai − 1)2 ≤ c1 α (λ(4)− λ(41))

12∑
i=1

(bi − 1)2 ≤ c1 α (λ(8)− λ(81)) (2.10)

By equation (2.5) from Lemma 2.6 and (2.10), we get an upper bound on ||∇ω̂ − l Id||2L2(Un) in

terms of the area differences. By summing up the contributions (2.10) of the polyhedra 4 ∈ Tn,
we conclude for all ω ∈ Ωn,l that

|| ∇ω̂ − l Id ||2L2(Un) ≤ c1 α c
∑
4∈Tn

(λ(ω̂(4))− λ(4)). (2.11)

As a consequence of (Ω2) and the periodic boundary conditions (3.1), the right hand side in
(2.11) does not depend on ω ∈ Ωn,l. Hence, with ωl ∈ Ωn,l we can compute

∑
4∈Tn

(λ(ω̂(4))− λ(4)) =
∑
4∈Tn

(λ(ω̂l(4))− λ(4)) = |Un|(l3 − 1). (2.12)

The combination of the equations (2.11) and (2.12) gives

|| ∇ω̂ − l Id ||2L2(Un) ≤ c1 α c |Un| (l3 − 1). (2.13)

The reference measure δ0⊗ λIn\{0} and the set of allowed configurations Ωn,l are invariant under
under the translations

ψb : Ωper
n,l → Ωper

n,l (ω(x))x∈I 7→ (ω(x+ b)− ω(b))x∈I
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for b ∈ T . As a consequence the matrix valued random variables ∇(ω̂(4)) are identically dis-
tributed for 4, 4̃ ∈ triang(Tn) such that 4 = 4̃ (mod T ). Thus for any 4 ∈ triang(T1) the
random variables ∇(ω̂(4+ t))t∈T are identically distributed. Therefore

EPn,l [ || ∇ω̂ − l Id ||2L2(Un) ] =
∑

4∈triang(T1)

|Un(4)| EPn,l [ |∇ω̂(4)− l Id|2 ]

with the regions Un(4) of Un taken up by T -translates of 4. Since the proportions |Un(4)|/|Un|
are independent of n for any 4 ∈ triang(T1), this equation together with (2.13), implies

lim
l↓1

sup
n∈N

sup
4∈triang(Tn)

EPn,l [ |∇ω̂(4)− l Id|2 ] = 0.

By means of the triangle inequality, we see that for all 4 ∈ triang(Tn) and ω ∈ Ωn,l

|∇ω̂(4)− Id|2 ≤ |∇ω̂(4)− l Id|2 + c2
2(l − 1)2 + 2c2 |l − 1| |∇ω̂(4)− l Id|

with c2 = |Id| > 0. For ω ∈ Ωn,l, the term |∇ω̂(4)− l Id| is uniformly bounded for l ∈ (1, α) and
n ∈ N, which proves the theorem.

3 Two-dimensional model with local geometry dependent inter-
actions

In this section, we extend the result of [5] about long-range orientational order in that we get rid of
the a-priory enumeration of two-dimensional hard disk configurations by an underlying triangular
lattice and merely impose local geometry dependent conditions by means of a Hamiltonian H.
The conditions will impose that hard disks have exactly six neighbors that are not too far away.
We show that long-range orientational order carries over to infinite volume Gibbsian point process
defined by H.

3.1 Definitions

Let us cite some definitions from [3]. We equip the plane R2 with its Borel σ-algebra B(R2)
and by λ we denote the Lebesgue measure on (R2,B(R2)). The characters Λ and ∆ will always
denote measurable regions in R2 and the notation ∆ b R2 means that in addition ∆ is bounded.

Consider the set X ⊂ 2(R2) of locally finite point configurations in R2. That means X ∈ X is a
subset X ⊂ R2 and for any ∆ b R2, the intersection X∆ := pr∆(X) := X∩∆ has finite cardinality
|X∆| < ∞. The counting variables N∆(X) := |X∆| generate a σ-algebra A := σ(N∆ : ∆ b R2)
on X . The union of X,Y ∈ X will be denoted by XY , this will be used when defining the
configuration XΛYΛc that agrees with X on Λ and with Y on the complement of Λ. In a sequence
of set operation, unions XY are to evaluate first in order to reduce brackets. On the measurable
space (X ,A), we consider the Poisson point process Πz with intensity z > 0. The measure
Πz is uniquely characterized by the properties that that for all ∆ b R2 under Πz: (i) N∆ is
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Poisson distributed with parameter zλ(∆), and (ii) conditional on N∆ = n, the n points in ∆ are
independently and uniformly distributed on ∆ for each integer n ≥ 1. Similarly, configurations
XΛ = {XΛ : X ∈ X} in the set Λ carry the trace σ-algebra A′Λ := A|XΛ

and the reference measure
Πz

Λ which is the law of XΛ if X is distributed according to Πz. We will also need the pullback of
A′Λ to X defined by AΛ := pr−1

Λ A′Λ ⊂ A. Finally, we define the shift group Θ = {θr : r ∈ R2},
where θr : X → X is the translation by −r ∈ R2, consequently N∆(θrX) = N∆+r(X) for all
∆ b R2.

We fix α > 0 small enough, the size of α will be specified later. We change the notation
of [5] from ε to α at this point to emphasize that α is fixed and not particularly small. Let
Λ1+α := {x ∈ R2 : |x− y| < 1 + α for some y ∈ Λ} be the (1 + α)-enlargement of Λ. For X ∈ X
we define the Hamiltonian HΛ,Y in Λ with boundary condition Y ∈ X by

HΛ,Y (X) :=


0 for all x ∈ XΛYΛ1+α\Λ and y ∈ XΛYΛc : |x− y| > 1

and for all x ∈ XΛYΛ1+α\Λ : |XΛYΛc ∩A1,1+α(x)| = 6

∞ otherwise.

This is to say that HΛ,Y (X) ∈ {0,∞} takes the value 0 if and only if every point of XΛ1+α

has distance greater than one from points in XΛYΛc and has exactly six XΛYΛc-neighbors in the
annulus A1,1+α(x) = {y ∈ R2 : |y − x| ∈ (1, 1 + α)}, otherwise H is defined to be infinity. Note
that the only part of the boundary condition Y relevant for HΛ,Y (X) is in the region Λ2(1+α) \Λ.

Definition 3.1. We define the partition function ZzΛ,Y by

ZzΛ,Y := Πz
Λ{XΛ : HΛ,Y (XΛ) = 0} =

∫
e−HΛ,Y (X)Πz

Λ(dX).

We call a boundary condition Y ∈ X admissible for the region Λ b R2 if 0 < ZzΛ,Y . We write

XΛ,z
∗ for the set of all these Y .

The set of admissible boundary conditions XΛ,z
∗ is never empty as the l ∈ (1, 1 + α) multiply of

a triangular lattice with lattice constant one is always in XΛ,z
∗ . We note that HΛ,Y (∅) = 0 for

YΛ1+α = ∅ and also for specifically chosen Λ and possibly non-empty Y . The partition function
ZzΛ,Y is zero, if neither YΛ1+α\Λ = ∅ nor the boundary condition YΛ1+α\Λ can be extended to a

near triangular lattice configuration in Λ1+α.

Definition 3.2. For Y ∈ XΛ,z
∗ , we define the Gibbs distribution in the region Λ b R2 with

boundary condition Y by the formula

γzΛ(F |Y ) =

∫
XΛ

1F (XYΛc)e
−HΛ,Y (X)Πz

Λ(dX)/ZzΛ,Y ,

where F ∈ A. Note that γzΛ(·|Y ) is a measure on the whole space (X ,A).

In case of YΛα\Λ 6= ∅, the XΛ-marginal of the measure γzΛ(·|Y ) is uniform on the configurations in
XΛ that extended YΛα\Λ to a near triangular lattice configuration in Λα. Otherwise if YΛα\Λ = ∅,

10
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then γzΛ(·|Y ) = δYΛc
. Note that (F, Y ) ∈ (A,X ) 7→ γzΛ(F |Y ) is a probability kernel from (X ,AΛc)

to (X ,A), but the distribution γzΛ(·|Y ) has δYΛc
as its marginal on (XΛc ,A′Λc).

Definition 3.3 (infinite-volume Gibbs measure). A probability measure P on (X ,A) is an an
infinite-volume Gibbs measure for z > 0 if P (XΛ,z

∗ ) = 1 and∫
fdP =

∫
XΛ,z
∗

1

ZzΛ,Y

∫
XΛ

f(XYΛc)e
−HΛ,Y (X)Πz

Λ(dX)P (dY )

for every Λ b R2 and every measurable f : X → [0,∞). We denote the set of infinite-volume
Gibbs measures by Gz.

Note that the right hand side in the defining equality is equal to EP [γzΛ(f |·)]. Therefore, a
measure P is infinite volume Gibbs measure, if and only if PγzΛ = P for every Λ b R2, where the
product is understood as to take average with P in the second variable of γzΛ. We can easily see a
degenerated measure δ∅ ∈ Gz, however we will be interested in more interesting Gibbs measures.
In fact, as soon as P (∅) = 0 for a measure P ∈ Gz, we have that P is supported on hard disk
configurations with infinitely many disks.

The Hamiltonian H implements an example of a k-nearest neighbor interaction as explained
in [3, Chapter 4.2.1]. Therefore by [3, Lemma 5.1.], the kernels γzΛ, γz∆ for Λ ⊂ ∆ b R2 and

Y ∈ XΛ,z
∗ satisfy the consistency conditions γzΛ(XΛ,z

∗ |Y ) = 1 and γz∆γ
z
Λ = γz∆, where the product

is understood as product of probability kernels.

3.2 Results

We show the following generalization1 of [5, Thm. 4.1].

Theorem 3.4. Let 0 < α <
√

3 − 1 be small enough (such that Lemma 3.5 holds true for the
choice of this α). Then for every 2/(

√
3(1 + α)2) < ρ < 2/

√
3 (the density of centers in the

densest packing of disks with diameter 1), there is a measure Pρ ∈ ∩z>0Gz such that

(i) Density = ρ: For any Λ b R2, we have EPρ [NΛ] = ρλ(Λ).

(ii) Translational invariance: The measure Pρ is translational invariant in any direction in R2,
i.e. Pρ ◦ θ−1

r = Pρ for any r ∈ R2.

(iii) Long-range orientational order: Let x ∈ X be the point with the smallest distance from the
origin. It is a.s. unique. We have Pρ(NA1,1+α(x) = 6) = 1. Choose a random neighbor
y ∈ X of x (i.e. 1 < |y − x| < 1 + α) uniformly distributed among all six neighbors. Then
as ρ ↑ 2/

√
3, the law of y− x w.r.t. Pρ converges weakly to the uniform distribution on the

6th roots of unity in C =̂ R2.

Note that by translational invariance of Pρ, property (iii) holds when initially picking the closest
point x to any reference point x0 ∈ R2 instead of the origin. Hence the long-range orientational

1The wording of Theorem 3.4 up to some minor modification in the definition of H was suggested by Franz
Merkl in a talk at a conference (Trends in Mathematical Crystallization) held at Warwick University in May 2016
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order, as neighbors of x position themselves close to translates of the 6th roots of unity. The
choice of α will be made somewhat explicit in the proof of Lemma 3.5. The set of Gibbs measures
Gz is most likely independent of z > 0, however we won’t pursue the proof of this statement as
it leads to geometric considerations that are not in the center of our analysis.

3.3 Proofs

For a configuration X ∈ X , we say that H(X) = 0 if for all x, y ∈ X, we have |x − y| > 1 and
|X∩A1,1+α(x)| = 6. This is the same as having HΛ,X(X) = 0 for any Λ b R2. For a configuration
∅ 6= X ∈ X with H(X) = 0, we can define a simplicial complex K(X) consisting of zero, one and
two cells defined as follows. The set of zero cells K0(X) is X ⊂ R2. The set of one cells K1(X)
are edges between zero cells of distance between 1 and 1 +α, and the two cells are triangles with
sides in K1(X). We will see in the following Lemma, that by definition of H and some geometric
considerations, for α small enough, the graph defined by the one and two skeleton of this complex

is locally, and therefore also globally isomorphic to the triangular lattice I = Z+τZ with τ = e
iπ
3

with edge set E = {{i, j} ⊂ I : |i− j| = 1}. The set of triangles surrounded by three edges in E
is denoted by T , these are two cells if we regard I as a simplicial complex.

The most important lemma linking the theorem above to [5, Thm. 4.1] is the following.

Lemma 3.5. There is an α ∈ (0,
√

3−1) such that for any configuration X ∈ X with H(X) = 0,
the graph defined by the one and two skeleton of K(X) is isomorphic to the triangular lattice I.
In other words there is a bijective map ω : I → X such that for all i, j ∈ I: |i− j| = 1 if and only
if |ω(i)− ω(j)| ∈ (1, 1 + α).

Proof. We define for i ∈ I its closest neighborhood N(i) ⊂ I by N(i) = {j ∈ I : |i − j| ≤ 1}.
Let X ∈ X such that H(X) = 0. A map ω : N(i) → X is called a local isomorphism at i if for
all j, k ∈ N(i), we have |j − k| = 1 if and only if |ω(j) − ω(k)| ∈ (1, 1 + α). By taking α > 0
small enough, we can ensure that for all i ∈ I and x ∈ X there is a local isomorphism ω at i
such that ω(i) = x. To see this, observe that as α→ 0, for every y ∈ A1,1+α(x) there are exactly
two points y1, y2 ∈ A1,1+α(x) \ {y} such that |yi − y| → 1, for other z ∈ A1,1+α(x) \ {y}, we have
lim infα→0 |z−y| ≥

√
3. Since we know that |X∩A1,1+α(y)| = 6, a simple geometric consideration

related to the kissing problem, gives that y1, y2 ∈ A1,1+α(y), since if yi 6∈ A1,1+α(y) for i ∈ {1, 2},
for α small enough there was not enough space to place 6 points in A1,1+α(y) having distance
bigger than 1 from each other and from yi. To be more precise, for all i ∈ I and x ∈ X there will
be twelve such local isomorphisms taking rotations and reflection into account. We fix α small
enough such that the local isomorphism property holds, since it holds for any small enough α,
we can choose α to be smaller than

√
3− 1.

Let us construct a map ω : I → X as follows. We fix an arbitrary x0 ∈ X and define ω|N(0) to
be one of the six orientational preserving local isomorphism at 0 with ω(0) = x0. Fix a spanning
tree T of I. For each i ∈ I, there is a unique path on nearest neighbors in T connecting 0 to
i. Since there are local isomorphism at each pair of points of I and X, we can successively,
uniquely extend ω to vertices of T by choosing the unique of the six orientation preserving local
isomorphisms that is consistent with T . This is to say that if for a neighbor i of j in T , we already
assigned a point ω(i) then we already choose a local isomorphism at i with i 7→ ω(i). Let us
assign j to the point in X which is determined by this local isomorphism. Now, there is only one

12
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local isomorphism at j, which is consistent with the local isomorphism chosen at i in the sense
that i has identical images under the two local isomorphisms. We use this local isomorphism to
proceed with the construction and map all neighbors of j in T into X.

It remains to show that the map ω : I → X is an isomorphism. To conclude ω is an isomorphism
onto its image, we fix a loop γ starting and ending in i ∈ I composed of a path in T and an edge
between i and one of its neighbors in I to which it is not connected in T . We need to show that
the map induced along γ with an initial orientational preserving local isomorphism ω|N(i) at i,
maps to a loop in K(X) starting and ending in ω(i). To this end we can show a seemingly more
general but equivalent statement. Take any loop γ = (i0, i1, i2, . . . , in) at 0 ∈ I (i.e. i0 = in = 0)
and x ∈ X, fix a local isomorphism at 0 with 0 7→ x and show that the map induced along γ
maps γ to a loop ω(γ) in X at x. Here ω is a locally defined along the curve γ.

We can deform the loop γ to the boundary of a two cell that contains 0 by successively ”removing”
two cells that intersect γ and are inside of it. By removing a two cell, we mean one of the following.
Two subsequent edges (ik−1, ik), (ik, ik+1) of γ, we can exchange for the unique edge (ik−1, ik+1)
if |ik−1 − ik+1| = 1, or we can exchange one edge (ik, ik+1) of γ for two edges (ik, j) and (j, ik+1)
in I. For every such transformation of γ, we obtain a modified γ′ and a map ω′ that is uniquely
determined by the local isomorphism at ik and is the unique extension of the local isomorphism
at 0 along γ′. Note that ω = ω′ on the domain that they are both defined and ω(γ) is closed if and
only if ω′(γ′) is. When after removing finitely many two cells, we arrive at γ′ = (0, i, j, 0) being
the boundary of a two cell that contains the origin. Since ω′|γ′ should be the unique extension
of the local isomorphism at 0 along γ, we see that ω′(γ) is closed and therefore so is ω(γ).

It remains to show that ω is surjective. Take now a curve γ̂ in K(X) from x0 to some y ∈ K(X).
Note that K(X) is a connected graph, as for small enough α and x 6= y we can always find a
neighbor z of x which is closer to y than x. The curve γ corresponds to a curve γ in I from 0 to
some i ∈ I. Applying the procedure from above to the concatenation of the path from 0 to i in
T and the reverse of γ, we see that ω(i) = y.

This lemma can be also proved with the formalism of Čech cohomology using the de Rham
isomorphism and can be generalized to configurations with point defects (missing points). The
usefulness of the Čech cohomology and de Rham’s theorem was pointed out to us by Franz Merkl.
We decided to give another proof using less formalism. We also note that α <

√
3 − 1 is not

explicitly used in the proof, but we showed that it is true for any 0 < α small enough.

To construct Pρ, we use measures on periodic configurations. For l > 1 and n ∈ N, let us
define measures Pn,l on n-periodic configurations as in [5]. A periodic, enumerated configuration
ω ∈ Ωper

n,l is a map I → R2 such that Theorem 3.6 hold true for this choice of α.

ω(i+ nj) = ω(i) + lnj for all i, j ∈ I. (3.1)

It suffices to define an n-periodic, enumerated configuration on a set of n2 representatives In ⊂
I as equation (3.1) uniquely defines the configuration on the complement (In)c. The event
of admissible, n-periodic, enumerated configurations Ωn,l ⊂ Ωper

n,l is defined by the properties
(Ω1)− (Ω3):

(Ω1) |ω(i)− ω(j)| ∈ (1, 1 + α) for all {i, j} ∈ E.

13
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For ω ∈ Ω we define the extension ω̂ : R2 → R2 such that ω̂(i) = ω(i) if i ∈ I, and on the
closure of any triangle 4 ∈ T , the map ω̂ is defined to be the unique affine linear extension of
the mapping defined on the corners of 4.

(Ω2) The map ω̂ : R2 → R2 is injective.

(Ω3) The map ω̂ is orientation preserving, this is to say that det(∇ω̂(x)) > 0 for all 4 ∈ T
and x ∈ 4 with the Jacobian ∇ω̂ : ∪T → R2×2.

Define the set of admissible, n-periodic, enumerated configurations as

Ωn,l = {ω ∈ Ωper
n,l | ω satisfies (Ω1)–(Ω3)}.

Let the probability measure Pn,l be

Pn,l(A) =
δ0 ⊗ λIn\{0}(Ωn,l ∩A)

δ0 ⊗ λIn\{0}(Ωn,l)

for any Borel measurable set A ∈ Fn =
⊗

i∈In B(R2), thus Pn,l is the uniform distribution on the

set Ωn,l with respect to the reference measure δ0⊗ λIn\{0}. The first factor in this product refers
to the component ω(0). The parameter l in the definition of Ωn,l and Pn,l controls the density
of periodic configurations such that ρ = 2

l2
√

3
. We quote Theorem 4.1 from [5] which will be the

major ingredient of the proof of Theorem 3.4.

Theorem 3.6. For any 0 < α small enough one has

lim
l↓1

sup
n∈N

sup
4∈T

EPn,l [ |∇ω̂(4)− Id|2 ] = 0 (3.2)

with the constant value of the Jacobian ∇ω̂(4) on the set 4 ∈ T .

We note that the theorem holds for any α ∈ (0,
√

3 − 1), however the we omit the proof of this
which is just a more careful consideration of arguments in the proof of [5, Theorem 4.1] and will
refer to small enough α.

In the following we construct Pρ as a limit of translational invariant versions of Pn,l and show
that this measure is a Gibbs measure in Gz for any z > 0. We follow ideas from [3] to construct
a limiting measure. Fix l > 1 and define the measures Gn on (X ,A) by specifying it’s marginal
(Gn)Λn on (XΛn ,A′Λn)

(Gn)Λn =

(
1

λ(Λn)

∫
Λn

Im[Pn,l] ◦ θr dr

)
Λn

,

with the image measure Im[Pn,l] of Pn,l under the map Im : ω 7→ {ω(x) : x ∈ I} and the
domain Λn = l{x+ yτ : x, y ∈ [−n/2, n/2)}. The averaging over r ∈ Λn is necessary to obtain a
translational invariant measure on the torus, since ω(0) = 0 holds Pn,l−a.s.. The measure Gn is
then defined by having i.i.d. projections on the sets {Λn + inl}i∈I , which form a tiling of R2. In
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order to have translational invariant probability measures on (X ,A), we consider the averaged
measures

Ĝn =
1

λ(Λn)

∫
Λn

Gn ◦ θr dr

By definition and the periodicity of Gn, Ĝn are translational invariant. We will show that the
sequence (Ĝn)n∈N is tight in the topology of local convergence on translational invariant probability
measures on X generated by P →

∫
fdP for functions f that are AΛ-measurable for some Λ b R2.

Such functions we call local and denote the set of local functions by L.

The only difference to the definitions after Lemma 5.1. in [3] are in the nature of the measures
(Gn)Λn . In our case (Gn)Λn are measures that inherit geometric constraints from the structure
of Pn,l that are defined on toruses of different size. In [3] on the contrary, the authors use a
measures GzΛn,ω̄ that have fixed boundary condition ω̄ on the complement of Λn.

For a shift invariant probability measure P on (X ,A) and Λ b R2 define the measure PΛ :=
P ◦ pr−1

Λ and the relative entropy w.r.t. Πz
Λ as

I(PΛ|Πz
Λ) :=

{∫
f ln fdΠz

Λ if PΛ << Πz
Λ with density f

∞ otherwise
.

The specific entropy of P w.r.t. Πz is then defined by

I(P ) := lim
n→∞

1

λ(∆n)
I(P∆n |Πz

∆n
),

where ∆n b R2 is a cofinite increasing sequence of sets. We refer to [6] and [7] for existence
and properties of the specific entropy. We will set z = 1 and compute entropies relative to Π1

∆n
.

By [7, Proposition 2.6], the sublevel sets of I are sequentially compact in the topology of local
convergence. Therefore, we only need to show that the specific entropies of the measures {Ĝn}n∈N
are bounded by some constant. We start with a proposition that provides lower bound on the
partition sum.

Proposition 3.7. For all α ∈ (0, 1] and l ∈ (1, 1 +α), there is an r = r(α, l) ∈ (0, 1/2) such that
for n ∈ N, we have

δ0 ⊗ λIn\{0}(Ωn,l) ≥ (πr2)|In|−1. (3.3)

Proof. For r > 0, we define, like in (3.2) in [8], the set of configurations which are close to the
scaled, enumerated, standard configuration ωl(i) = li for i ∈ I:

Sn,l,r = {ω ∈ Ωper
n,l | |ω(i)− ωl(i)| < r for all i ∈ I}. (3.4)

For sufficiently small r > 0, depending on α and l, we conclude, like in the proof of [8, Lemma
3.1], that Sn,l,r ⊂ Ωn,l. To prove this inclusion, we have to show the properties (Ω1)–(Ω3) for all
ω ∈ Sn,l,r. Let us compute for (i, j) ∈ E and ω ∈ Sn,l,r:
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||ω(i)− ω(j)| − l| = ||ω(i)− ω(j)| − |ωl(i)− ωl(j)||
≤ |ω(i)− ωl(i)|+ |ω(j)− ωl(j)| < 2r.

If we choose 2r < max{l−1, 1+α− l} < 1, then ω satisfies (Ω1). Condition (Ω2) is a consequence
of the inequality 〈v,∇ω̂(x)v〉 > 0 for all v ∈ R \ {0}, and for all x ∈ R2 where ω̂ is differentiable.
This inequality holds for small enough r since ∇ω̂ is close to the identity uniformly on R2. Hence
ω̂ is a bijection onto its image. Here we applied a theorem from analysis which states that a C1-
map f from an open convex domain U ⊂ Rn into Rn with 〈v,∇f(x)v〉 > 0 for all v ∈ Rn\{0} and
x ∈ U is a diffeomorphism onto its image. However, ∇ω̂(x) is only piecewise differentiable, but on
the straight line L connecting x, y ∈ R2 with x 6= y, there are only finitely many points z ∈ R2∩L
where the curve (ω̂(ty+ (1− t)x))t∈(0,1) is not differentiable. Assume that 〈v,∇ω̂(x)v〉 > 0 holds
whenever ω̂ is differentiable in x. The curve is piecewise linear, and on each of these pieces, the
derivative of the curve forms an acute angle with y − x, therefore the curve cannot be closed.
Thus, the condition (Ω2) is satisfied in the case of a sufficiently small r. Furthermore, condition
(Ω3) is satisfied by ωl, therefore also by ω if r is sufficiently small. Hence Sn,l,r ⊂ Ωn,l for some
r ∈ (0, 1/2), and we conclude

δ0 ⊗ λIn\{0}(Ωn,l) ≥ δ0 ⊗ λIn\{0}(Sn,l,r) = (πr2)|In|−1

where the last equality is obtained by integrating over each ω(i) with i 6= 0 successively along a
fixed spanning tree of In which gives a factor πr2, and considering that ωl(0) = 0 and that the
measure δ0 ⊗ λIn\{0} fixes ω(0) = 0.

Proposition 3.8. The set {I(Ĝn) : n ∈ N} is bounded, thus the set {Ĝn : n ∈ N} is sequentially
compact in the topology of local convergence. Therefore, there is a sequence nk →∞ and a shift
invariant measure Pρ on (X ,A) such that limk→∞

∫
fdGnk =

∫
fdPρ for any f ∈ L.

Proof. As also noted in the proof of [3, Proposition 5.3], the definition of Ĝn implies that

Iz(Ĝn) =
1

λ(Λn)
I
(
(Gn)Λn |Π1

Λn

)
.

The relative entropy I
(
(Gn)Λn |Π1

Λn

)
can be explicitly computed as follows. The measure (Gn)Λn

is supported on configurations that have n2 points in Λn and if Λn is folded into a torus, then
each point x has exactly six neighbors in the annulus A1,1+α(x) around it and no points closer
than distance one. These configurations Xn,l are images of enumerated configurations Xn,l =
(Im Ωn,l)Λn . By Lemma 3.5, (Gn)Λn is the uniform distribution on these configurations with
respect to Π1

Λn
. The density of (Gn)Λn w.r.t. Π1

Λn
is given by f = 1Xn,l/Π

1
Λn

(Xn,l). To find the
constant Π1

Λn
(Xn,l) more explicitly, consider the expectation

Π1
Λn [g] = e−λ(Λn)

∞∑
k=0

∫
Λkn

1

k!
g({x1, . . . , xk}) λk|Λkn(dx1, . . . ,dxk)
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Consequently, we have

Π1
Λn(Xn,l) =

e−λ(Λn)

n2
λ(Λn) δ0 ⊗ λIn\{0}(Ωn,l).

This follows since a factor e−λ(Λn)

(n2)!
comes from the density of Π1

Λn
conditioned on n2 points with

respect to λ(n2)|
Λ

(n2)
n

(dx1, . . . ,dx
2
n). Then conditioned on the position of x1, the volume of the

allowed configurations by their shift invariance on the torus is (n2−1)! δ0⊗λIn\{0}(Ωn,l), further-
more the first point can be distributed uniformly in Λn. The relative entropy is I

(
(Gn)Λn |Π1

Λn

)
=

− ln
(
Π1

Λn
(Xn,l)

)
and the specific entropy can be bounded using Proposition 3.7 and λ(Λn) =

n2l2
√

3/2 for big enough n, we obtain

I ((Gn)Λn) = −
ln
(
Π1

Λn
(Xn,l)

)
λ(Λn)

= 1 +
n2

λ(Λn)
− ln (λ(Λn))

λ(Λn)
−

ln
(
δ0 ⊗ λIn\{0}(Ωn,l)

)
λ(Λn)

≤ 1 +
n2

λ(Λn)
− ln (λ(Λn))

λ(Λn)
− |In − 1| ln(πr2)

λ(Λn)

≤ 1 +
2− 2 ln(πr2)

l2
√

3
.

The next proposition shows that Pρ is an infinite-volume Gibbs measure. Note that Ĝn and Λn
depend on l > 1 which we fixed previously.

Proposition 3.9. The measure Pρ is an infinite-volume Gibbs measure Pρ ∈ ∩z>0Gz.

Proof. Fix Λ b R2, z > 0 and ρ < 2/
√

3 large enough such that 2/(
√

3(1 + α)2) < ρ where α
is such that Lemma 3.5 holds with that α. Let l > 1 such that ρ = 2/(l2

√
3). For X ∈ X ,

let X̃n be the periodic extension of XΛn to X , i.e. X̃n = ∪i∈IXΛn + lni. Let κ > 0 be so
big such that Λκ \ Λ contains a connected ring of triangles from K2(X̃n) for Gn-almost all X
for all n ∈ N. Consequently, for all n ∈ N large enough such that Λκ ⊂ Λn, the number of
points in Λ conditioned on XΛc is Gn-almost surely determined by the configuration in Λκ \ Λ.
The measure (Gn)Λn is the uniform distribution of enumerable, allowed configurations with n2

points on the torus. By Lemma 3.5, the conditional distribution of XΛ given XΛc under Gn is
therefore the uniform distribution on configurations XΛ such that HΛ,XΛc

(XΛ) = 0. Uniform
distribution makes sense, as the number of points in Λ is almost surely constant with respect to
the conditioned measure. Therefore, the factorized version of the conditional distribution of Gn
given AΛc is given by γΛ(·|·), this is to say that

Gn(F ) =

∫
X
γΛ(F |Y )Gn(dY ) (3.5)

for any F ∈ A and n ∈ N big enough for Λκ ⊂ Λn. Since z is fixed, we can omitted it as a
superscript in γz.

The rest of the proof is as the proof of [3, Prop. 5.5.]. Define Λ◦n := {r ∈ R2 : Λκ + r ⊂ Λn} and
the (subprobability) measures

Ḡn :=
1

|Λn|

∫
Λ◦n

Gn ◦ θ−1
r dr.
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Then
∫
fdĜn −

∫
fdḠn → 0 by the same argument as in [7, Lemma 5.7], therefore Pρ can also

be seen as an accumulation point of the sequence (Ḡn). Let F ∈ ∪∆bR2A∆ be a local set, using
(3.5), we obtain for r ∈ Λ◦n

Gn ◦ θ−1
r (F ) =

∫
X
γΛ(F |Y )Gn ◦ θ−1

r (dY ).

Therefore averaging over r ∈ Λ◦n gives

Ḡn(F ) =

∫
X
γΛ(F |Y )Ḡn(dY ). (3.6)

Since the integrand on the right is a local function of Y , we can set n = nk and let k →∞, that
gives (3.6) for Pρ instead of Ḡn. Since local sets generate the σ-algebra A, (3.6) holds for Pρ and
F ∈ A, which by monotone convergence shows that Pρ is an infinite-volume Gibbs measure.

Proof of Theorem 3.4. In Propositions 3.9 and 3.8, we showed the existence of a translational
invariant measure Pρ ∈ ∩z>0Gz which is the local limit of the measures (Gnk)k≥1, therefore
Pρ satisfies property (ii). Property (i) holds as it can be expresses by a local function and
EGnk [|X ∩ B|] = ρλ(B) for any k ≥ 1 by the periodic boundary conditions. Similarly, property
(iii) can be expressed by local functions depending on {x0, x1, ..., x6}∩Λn, where x0 is the closest
random point to the origin and xi is i’th closest point to x0. For n large enough we have
Gnk(|{x0, x1, ..., x6}∩Λn| = 7) = 1 for any k ≥ 1 and therefore Pρ(|{x0, x1, ..., x6}∩Λn| = 7) = 1.
By Theorem 3.6 we have

lim
ρ↑2/

√
3
sup
k≥1

EGnk

[
6∑
i=1

|∇ω̂(4i)− Id|2
]

= 0, (3.7)

where {4i}1≤i≤6 are the random six triangles in T such that one of their vertices is mapped to
x0 under ω. Let f : C6 → R be continuous, bounded and permutation invariant. We use the
natural identification of topological spaces C=̂R2. Let yi = xi − x0. By continuity of f , there is
a constant c > 0 such that

∣∣∣f(y1, . . . , y6)− f(eiπ/3, ei2π/3, . . . , ei2π)
∣∣∣ ≤ c 6∑

i=1

|∇ω̂(4i)− Id|2 (3.8)

Gnk -a.s. for any k ≥ 1. Combining equations (3.7) and (3.8), we obtain that

lim
ρ↑2/

√
3
EPρ

[∣∣∣f(y1, . . . , y6)− f(eiπ/3, ei2π/3, . . . , ei2π)
∣∣∣] = 0

which concludes the proof of property (iii).
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