Alexisz Gaál

Optional coding homework 1

A .cvs file with a list of 4000 zeros and ones was created using a Python 3 code. The list is a sample from the following parametric statistical model. The model has 3 unknown parameters (n, p, q), where n is an integer $10 \leq n \leq 20$ and $p \in[0,1 / 2)$ and $q \in[1 / 2,1)$. Consider i.i.d. Bernoulli sequences $X=\left(X_{1}, X_{2}, \ldots\right)$ and $Y=\left(Y_{1}, Y_{2}, \ldots\right)$ with parameters p for X and q for Y. We define an independent sequence Z as follows:

$$
Z=\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}, X_{n+1}, \ldots, X_{2 n}, Y_{n+1}, \ldots, Y_{2 n}, X_{2 n+1}, \ldots\right) .
$$

The sample provided in the .cvs file consists of the first 4000 entries of Z . Your task is to estimate n, p, q. Furthermore, to know how good your estimates are, assuming \hat{n} has the right value, give approximate 95% confidence intervals for \hat{p} and \hat{q}.

How would you modify the estimators if the parameter space was changed to $p, q \in[0,1]$?

