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Abstract

Throughout this thesis, we are going to work in a hard disk model which is analogue
to the setting in [MR09] and [HMR13]. In this model of two-dimensional crystals, every
admissible configuration is a hard disk configuration, which, in addition, is a perturbed
version of some triangular lattice with side length one. A triangular lattice with side
length one is called standard. The objective of this thesis is to show that admissible
configurations in a given box with side length N ∈ N are arbitrarily close to some
standard triangular lattice whenever the particle density is chosen sufficiently high, and
this choice can be made independent of the box size N . Since this result is independent
of the choice of N , the existence of an infinite-volume Gibbs measure can be shown
which, in spite of the rotational symmetry of the set of admissible configurations, breaks
the rotational symmetry in a strong sense.

1 Motivation

The foundations of modern Statistical Mechanics were laid by Austrian physicist L. E.
Boltzmann in the nineteenth century. The Boltzmann distribution describes a physical
system in thermal equilibrium in terms of a given energy function, which is also called the
Hamiltonian of the system. The probability density on the set of states is given by the
Boltzmann factor and the partition sum. The Boltzmann factor carries information about
the energy of different states; the partition sum is a normalising constant. Integrating the
Boltzmann factor over a set of possible states, and subsequently dividing by the partition
sum, one obtains the probability of the system to be in some state of the given set. A
constraint of this model is the requirement that the partition sum must be finite. However,
several experimental findings were able to be explained using the Boltzmann distribution
such as the Maxwell-Boltzmann distribution of particles’ speed in ideal gases or its refine-
ments. The study of infinite systems was first made accessible when the notion of Gibbs
measures was introduced in the 1960s. In the works [Dob68], [LR69] and [Dob70], math-
ematicians R. L. Dobrushin, O. E. Lanford and D. Ruelle introduced this new concept,
which posed new mathematical questions. The concept relies on the idea that given a state
outside some finite region, the conditional distribution of the Gibbs measure inside the
finite region is given by the Boltzmann distribution depending on a local Hamiltonian.

First results investigated existence and uniqueness of Gibbs measures. Dobrushin’s con-
dition of weak dependence [Dob68] provides suitable precondition on uniqueness of Gibbs
measures in lattice systems. Non-uniqueness, on the other hand, is interpreted as phase
transition. Another question concerns conditions which imply that symmetries of the local
Hamiltonians are preserved by Gibbs measures. Breaking of symmetry, on the other hand,
implies the existence of a phase transition. There are several results in dimension two.
The Mermin-Wagner Theorem [MW66] and its more recent variants state preservation of
certain continuous symmetries in dimensions one and two such as translations or pure spin
transformations. In dimension two other results on preservation of continuous internal sym-
metries and translation are, among others, due to Dobrushin and Shlosman [DS75] as well
as Pfister [Pfis81] in lattice models, and in the case of continuum systems, due to Shlosman
[Shl79], Fröhlich and Pfister [FP81], [FP86] and Georgii [Geo99]. The mathematicians D.
Ioffe, S. Shlosman and Y. Velenik [ISV02] were able to relax assumptions on the interaction
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potential and treat the non-smooth case in lattice systems. T. Richthammer generalised
it to point processes in [Ric05] and [Ric09]. Contrarily, breaking of rotational symmetry
in dimension two at low temperature has been indicated since long, compare with [Mer68]
and [NH79]. F. Merkl and S. W. W. Rolles showed in [MR09] the breaking of rotation
symmetry in a simple model of two dimensional crystals without defects. In this model
of crystals, atoms can be enumerated by a triangular lattice. In the very recent work
[HMR13] by M. Heydenreich, F. Merkl and S. W. W. Rolles, defects were integrated into
the model. Defects are isolated single missing atoms, however, the results in [HMR13] can
be generalised to larger bounded islands of missing atoms as also mentioned in [HMR13],
but non-local defects are not included. The first model in [MR09] treated pair potentials
with at least quadratic growth; the second one, [HMR13], tackled the case of strictly convex
potentials.

In this thesis, we are going to examine an analogue of the models in [MR09] and [HMR13]
with a hard-core repulsion. For this potential we show the existence of breaking of rotational
symmetry. In Section 3 we address the case without defects; in Section 4 we apply a result
from [HMR13] to deal with isolated defects. In Section 5 we carry over the finite-volume
result without defects to some infinite-volume Gibbs measure. This work is motivated by
the following open problem: is there a Gibbs measure on the set of locally finite point
configurations in R2 which breaks the rotational symmetry of the hard-core potential?
This question is analogous to the problem which was solved in [Geo99] and [Ric09] for
translational symmetry. However, with another outcome than what is expected in the
case of rotational symmetry, since due to [Geo99] and [Ric09], translational symmetry is
preserved. We regard our simple semi-discrete model as a very first step in addressing this
question. The general problem might be approached from following perspective. Let us
remove a finite, connected set of vertices from a triangular lattice with side length 1+ε where
ε is sufficiently small. Take a Poisson point process with sufficiently high activity parameter
on an open subset of R2 which contains this finite connected set and its boundary that is
part of the remaining lattice. Conditioned on the event that Poisson points have Euclidean
distances greater than one from each other, and so from the boundary, the expected point
configuration is close to the scaled triangular lattice which is determined by the missing
part of the lattice. This scenario can only happen if the activity parameter is chosen high
enough, and for our purpose, this choice of the activity parameter should work for any size
of the missing lattice part. With this question in mind, one can recover this idea behind
the model and the results in Section 2.
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2 The model

2.1 Configuration space

The standard triangular lattice in R2 is the set I = Z + τZ with τ = e
iπ
3 . We identify

Z ⊂ R ⊂ R2 by R 3 x =̂ (x, 0) ∈ R2 and R2 ⊂ C by (x, y) =̂ x + iy. We think of I as an
index set, which is going to be used to parametrize countable point configurations in the
real plane. Let us define the quotient space IN = I/(NI) for an N ∈ N := {1, 2, 3, ...}. We
will think of IN as the following specific set of representatives:

IN = {x+ yτ | x, y ∈ {0, ..., N − 1}}. (2.1)

A parametrized point configuration in R2 is a function ω : I → R2, x 7→ ω(x), which
determines the point configuration {ω(x) | x ∈ I} ⊂ R2. For the set of all parametrized
point configurations we introduce the character Ω = {ω : I → R2}. Note that a single
point configuration {ω(x) | x ∈ I} ⊂ R2 can be parametrized by many different ω ∈ Ω.

Let ε ∈ (0, 1]. An N -periodic parametrized point configuration with side length l ∈ (1, 1+ε)
is a parametrized configuration ω which satisfies the periodic boundary conditions:

ω(x+Ny) = ω(x) + lNy for all x, y ∈ I. (2.2)

The set ofN -periodic parametrized configurations with side length l is denoted by Ωper
N,l ⊂ Ω.

From now on we will omit the word parametrized because we are going to work solely with
point configurations which are parametrized by I. An N -periodic configuration is uniquely
determined by its values on IN . Therefore, we identify N -periodic configurations ω ∈ Ωper

N,l

with functions ω : IN → R2.

The bond set E ⊂ I × I contains index-pairs with Euclidean distance one; this is E =
{(x, y) ∈ I × I | |x− y| = 1}. In order to transfer the definition to the quotient space IN ,
we define an equivalence relation ∼N on E by (x, y) ∼N (x′, y′) if and only if there is a
z ∈ NI such that x = x′ + z and y = y′ + z. Now, set EN = E/ ∼N . We can think of EN
as a bond set EN ⊂ IN × IN .

For x ∈ I and z ∈ {1, τ}, define the open triangle

4x,z = {x+ sz + tτz | 0 < s, t, s+ t < 1}

with corner points x, x + z and x + τz. For 4x,z denote the set of corner points by
S(4x,z) = {x, x+ z, x+ τz}. On the set of all triangles

T = {4x,z | x ∈ I and z ∈ {1, τ}},

we define an equivalence relation: 4x,z ∼N 4x′,z′ if and only if x − x′ ∈ NI and z = z′.
The set of equivalence classes is denoted by TN = T / ∼N . We identify equivalence classes
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4 ∈ TN with their unique representative with corners in the set {x+τy | x, y ∈ {0, ..., N}}.
The closures of the triangles in TN cover the convex hull of the above set, which we denote
by UN = conv({x+ τy | x, y ∈ {0, ..., N}}).

2.2 Probability space

Due to the definitions of Ω and Ωper
N,l, we can identify Ω = (R2)I and Ωper

N,l = (R2)IN .

Both sets are endowed with the corresponding product σ-fields F =
⊗

x∈I B(R2) and
FN =

⊗
x∈IN B(R2) where B(R2) denotes the Borel σ-field on each factor. The event of

admissible, N-periodic configurations ΩN,l ⊂ Ωper
N,l is defined by the properties (Ω1)− (Ω3):

(Ω1) |ω(x)− ω(y)| ∈ (1, 1 + ε) for all (x, y) ∈ E.

For ω ∈ Ω we define the extension ω̂ : R2 → R2 such that ω̂(x) = ω(x) if x ∈ I, and on the
closure of any triangle 4 ∈ T , the map ω̂ is defined to be the unique affine linear extension
of the mapping defined on the corners of 4.

(Ω2) The map ω̂ : R2 → R2 is injective.

(Ω3) The map ω̂ is orientation preserving, this is to say that det(∇ω̂(x)) > 0 for all
4 ∈ T and x ∈ 4 with the Jacobian ∇ω̂ : ∪T → R2×2.

Define the set of admissible, N -periodic configurations as

ΩN,l = {ω ∈ Ωper
N,l | ω satisfies (Ω1)–(Ω3)}

and the set of all admissible configurations as Ω∞ = {ω ∈ Ω | ω satisfies (Ω1)–(Ω3)}. Note
that for ω ∈ Ωper

N,l, (Ω2) is fulfilled if and only if ω̂ is a bijection; this is a consequence of
the periodic boundary conditions (2.2).

The set ΩN,l is non-empty and open in (R2)IN . The scaled standard configuration ωl(x) =
lx, for x ∈ I and 1 < l < 1 + ε, is an element both of ΩN,l and Ω∞. Figure 1 illustrates
a part of some admissible, 4-periodic configuration. The points of the configuration are
illustrated by hard disks with radii 1/2. The image of I4 and those of two equivalent
triangles are shaded.

Clearly, 0 < δ0 ⊗ λIN\{0}(ΩN,l) < ∞ with the Lebesgue measure λ on R2 and the Dirac
measure δ0 in 0 ∈ R2. The lower bound holds because sections of ΩN,l are non-empty and
open in (R2)IN\{0} if ω(0) is fixed; the upper bound is a consequence of the parameter ε in
(Ω1). Let the probability measure PN,l be

PN,l(A) =
δ0 ⊗ λIN\{0}(ΩN,l ∩A)

δ0 ⊗ λIN\{0}(ΩN,l)

for any Borel measurable set A ∈ FN , thus PN,l is the uniform distribution on the set ΩN,l

with respect to the reference measure δ0 ⊗ λIN\{0}. The first factor in this product refers
to the component ω(0) of ω ∈ Ω.
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Figure 1: A part of an admissible 4-periodic configuration.

2.3 Results

We have the following finite-volume result.

Theorem 2.1. For ε sufficiently small (such that equation (3.7) holds for all 1 < ai < 1+ε),
one has

lim
l↓1

sup
N∈N

sup
4∈TN

EPN,l [ |∇ω̂(4)− Id|2 ] = 0 (2.3)

with the constant value of the Jacobian ∇ω̂(4) on the set 4 ∈ TN and any norm | · | on
R2×2.

Since the convergence in Theorem 2.1 is uniform in N , we can find an infinite-volume
Gibbs measure P such that EP [ |∇ω̂(4) − Id|2 ] is small on every triangle 4 ∈ T . This
observation is object of the following theorem.

Theorem 2.2. In the case of ε as given in Theorem 2.1, for all δ > 0 there is an infinite-
volume Gibbs measure P , associated with the hard-core Hamiltonian on the set Ω∞, which
has the property P (Ω∞) = 1 and fulfils

sup
4∈T

EP [ |∇ω̂(4)− Id|2 ] ≤ δ. (2.4)

In fact, it is a result about a spontaneous breaking of the rotational symmetry in a strong
sense. The set Ω∞ is rotational invariant, and this symmetry is broken by the Gibbs
measure P in the sense of (2.4). The exact definition of a Gibbs measure will be given in
Section 5. The central argument is going to be the following rigidity theorem from [FJM02,
Theorem 3.1], which generalises Liouville’s Theorem.



8 Alexisz Tamás Gaál

Theorem 2.3 (Friesecke, James and Müller). Let U be a bounded Lipschitz domain in
Rn, n ≥ 2. There exists a constant C(U) with the following property: For each v ∈
W 1,2(U,Rn) there is an associated rotation R ∈ SO(n) such that

||∇v −R||L2(U) ≤ C(U)||dist(∇v,SO(n))||L2(U).

Liouville’s Theorem states that a function v, fulfilling ∇v(x) ∈ SO(n) almost everywhere,
is a rigid motion. Indeed, Theorem 2.3 generalises this result. We are going to set v = ω̂|UN
and U = UN , which is a bounded Lipschitz domain. The function ω̂|UN is affine linear on
each triangle 4 ∈ TN , thus piecewise affine linear on UN . As a consequence, ω̂|UN belongs
to the class W 1,2(UN ,Rn). The following remark, which also appears in [HMR13, Remark
1.5], is essential to achieve uniformity in Theorem 2.1 in the parameter N .

Remark 2.4. The constant C(U) in Theorem 2.3 is invariant under scaling of the do-
main: C(αU) = C(U) for all α > 0. In fact, setting vα(αx) = αv(x) for x ∈ U ,
we have ∇vα(αx) = ∇v(x), and therefore ||∇vα − R||L2(αU) = αn/2||∇v − R||L2(U), and

||dist(∇vα, SO(n))||L2(αU) = αn/2 ||dist(∇v,SO(n))||L2(U). Consequently, the constants
C(UN ) for the domains UN (N ≥ 1) can be chosen independently of N .

Spontaneous breaking of the rotational symmetry in the usual sense can be proved easier.
This observation is formulated and proved in the next proposition. A similar result and its
proof is also mentioned in [HMR13, Section 1.3].

Proposition 2.5. For all l ∈ (1, 1 + ε), N ∈ N, x ∈ I and z ∈ I with (0, z) ∈ E, we have

EPN,l [ω(x+ z)− ω(x)] = lz. (2.5)

Proof. We follow the ideas remarked in [HMR13, Section 1.3]. The reference measure
δ0 ⊗ λIN\{0} is invariant under the bijective translations

ψb : Ωper
N,l → Ωper

N,l (ω(x))x∈I 7→ (ω(x+ b)− ω(b))x∈I (2.6)

for all b ∈ I. The set ΩN,l is also invariant under ψ−1
b = ψ−b. As a consequence, the

measures PN,l are invariant under ψb for all b ∈ I, and the random vectors ω(x+ z)−ω(x)
have the same distribution under PN,l for all x ∈ I and a fixed z. Therefore, we obtain
(2.5) from the periodic boundary conditions (2.2).

The expression |ω(x+z)−ω(x)| is PN,l-almost surely uniformly bounded in N , hence (2.5)
carries over to weak limits of PN,l as N → ∞. Consequently, such weak limits are not
rotational invariant. We will show in Section 5 that there is a Gibbs measure which, on
finite subsets Λ ⊂ I, is a weak limit of some subsequence of (PN,l)N∈N. By the above
remark, this Gibbs measure breaks the rotational invariance of the set Ω∞. However, in
Section 3 we show Theorem 2.1, which states symmetry breaking in a much stronger sense.
Subsequently, in Section 5 we show Theorem 2.2, the existence of an infinite-volume Gibbs
measure which inherits this property.
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3 Finite-volume arguments

We are going to show that for ω ∈ ΩN,l, the L2-distance on UN of the Jacobian matrix
∇ω̂ from the scaled identity matrix l Id can be controlled by the difference of the areas of
ω̂(UN ) and UN . Because of the periodic boundary conditions, λ(ω̂(UN )) does not depend on
configurations ω with (Ω2), thus the mentioned area difference provides a suitable uniform
control on the set ΩN,l. First, we show that the L2-distance of ∇ω̂ from the scaled identity
l Id can be controlled by the sum over the squared deviations of the triangles’ side lengths
from one. The one should be associated with the side length of an equilateral triangle.

The following lemma provides the desired estimate on a single triangle. It states that the
distance from SO(2) of a linear map near SO(2) can be controlled by terms which measure
how the linear map deforms the side lengths of a standard, equilateral triangle. We take
ideas for the proof from [Th06, Lemma 4.2. in the appendix].

Lemma 3.1. There is a positive constant C such that, for all linear maps A : R2 → R2

with det(A) > 0 and the property

||Avi| − 1| ≤ 1 for all i ∈ {1, 2, 3}

where v1 = (1, 0), v2 = (1
2 ,
√

3
2 ), v3 = v1 − v2, the following inequality holds:

dist (A , SO(2))2 := inf
R∈SO(2)

|A−R|2 ≤ C max
i∈{1,2,3}

||Avi| − 1|2 (3.1)

where |M | =
√

tr(M tM) is the Frobenius norm and |v| is the Euclidean norm of v. Con-
versely, the inequality

max
i∈{1,2,3}

||Avi| − 1|2 ≤ dist (A , SO(2))2 (3.2)

holds for every linear A : R2 → R2.

Proof. To show the second inequality, we compute with the reverse triangle inequality:

max
i∈{1,2,3}

||Avi| − 1| = inf
R∈SO(2)

max
i∈{1,2,3}

||Avi| − |Rvi|| ≤ inf
R∈SO(2)

max
i∈{1,2,3}

|(A−R)vi|

≤ inf
R∈SO(2)

max
i∈{1,2,3}

|A−R| |vi| = dist(A, SO(2)).

To prove (3.1), first we are going to show that infR∈SO(2) |A−R| is given by |
√
AtA− Id|.

Observe that for U ∈ SO(2), the Frobenius norm |M | of the matrix M is invariant under
right and left multiplication by U , meaning |M | = |UM | = |MU |. By the Singular Value
Decomposition Theorem, there are U, V ∈ SO(2) such that D = V t

√
AtA V = U tAV is a

diagonal, positive-definite matrix. Here we made use of the assumption detA > 0. Hence,
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by the above invariance property, we can rearrange: infR∈SO(2) |A−R| = infR∈SO(2) |D−R|
and compute

|D −R|2 = tr((D −R)t(D −R)) = tr(D2) + tr(Id)− 2 tr(DR)

≥ tr(D2) + tr(Id)− 2 tr(D)

= |D − Id|2.

This inequality proves the equation infR∈SO(2) |A− R| = |D − Id| = |
√
AtA− Id|. Like in

[Th06], we define

m := max
i=1,2,3

||Avi|2 − 1| and p := |
√
AtA− Id|.

We proceed similarly to the proof of [Th06, Lemma 4.2 (Appendix)]. It suffices to prove
that p ≤ Km for some positive constant K, because |x2 − 1| ≤ 3|x− 1| for 0 ≤ x ≤ 2, and
thus

p2 ≤ K2m2 ≤ 9K2 max
i=1,2,3

||Avi| − 1|2,

which is the desired inequality with C = 9K2. Let us also define the matrix G = AtA− Id.
With G we can write ||Avi|2 − 1| = |〈vi, Gvi〉| ≤ m for all i ∈ {1, 2, 3} by the definition of
m. With the (reverse) triangle inequality, we compute: m ≥ |〈v3, Gv3〉| ≥ 2 |〈v2, Gv1〉| −
|〈v1, Gv1〉| − |〈v2, Gv2〉|, thus 3

2m ≥ |〈vi, Gvj〉| for all i, j ∈ {1, 2, 3}. By this result, we

conclude that there is a positive constantK > 0 such that |G| ≤ (K/
√

2)m. By the equality
x2−1 = (x+1)(x−1), we can estimate p = |G(

√
AtA+Id)−1| ≤ |G| |(

√
AtA+Id)−1| < Km

because |(
√
AtA+ Id)−1| = |(D+ Id)−1| <

√
2 by the positive-definiteness of D. Note that,

since 0 < det(D + Id) = det(
√
AtA+ Id),

√
AtA+ Id is invertible.

Now, we prove an estimate, which provides control over the L2-distance of ∇ω̂ from the
scaled identity matrix in terms of the side length deviations.

Lemma 3.2. There is a constant c2 such that for all N ≥ 1 and 1 < l < 1+ε the inequality

|| ∇ω̂ − l Id ||2L2(UN ) ≤ c2

∑
(x,y)∈EN

(|ω(x)− ω(y)| − 1)2 (3.3)

holds for all ω ∈ ΩN,l, and hence

EPN,l [ || ∇ω̂ − l Id ||2L2(UN ) ] ≤ c2

∑
(x,y)∈EN

EPN,l [ (|ω(x)− ω(y)| − 1)2 ] (3.4)

where the L2-norm is defined with respect to some scalar product on R2×2, and | · | denotes
the Euclidean norm on R2.
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Note that the right side in equation (3.3) is strictly positive because of the boundary
conditions (2.2) and because l > 1, whereas the left is zero for ω = ωl ∈ Ωper

N,l. Since the
measure PN,l is supported on the set ΩN,l, (3.4) follows from (3.3). Also note that c2 does
not depend on N .

Proof. Let ω ∈ ΩN,l. By Lemma 3.1 we conclude that on every triangle 4 ∈ TN , we have

dist (∇ω̂(4), SO(2))2 ≤ C max
x 6=y∈S(4)

(|ω(x)− ω(y)| − 1)2 ≤ C

2

∑
x 6=y∈S(4)

(|ω(x)− ω(y)| − 1)2

where we used the assumption ε ≤ 1 together with (Ω1) and (Ω3) to apply Lemma 3.1.
The factor 1/2 is a consequence of summing over all non-equal pairs (x, y). Orthogonality
of the functions which are non-zero on different triangles gives

|| dist(∇ω̂,SO(2)) ||2L2(UN ) ≤ c21

∑
(x,y)∈EN

(|ω(x)− ω(y)| − 1)2

with c21 = C λ(40,1) = C
√

3/4 because we sum again over both pairs (x, y) and (y, x)
on the right side. With application of Theorem 2.3 about geometric rigidity, we find an
R(ω) ∈ SO(2) such that

|| ∇ω̂ −R(ω) ||2L2(UN ) ≤ c22 || dist(∇ω̂,SO(2)) ||2L2(UN ),

with a constant c22, which does not depend on N by Remark 2.4. Because of the periodic
boundary conditions (2.2), the function ω̂ − l Id is N -periodic, this is to say

ω̂(x+Ny)− l(x+Ny) = ω̂(x)− lx for all x ∈ R2 and y ∈ I. (3.5)

Let A ∈ R2×2 be a constant matrix. Integrating the function 〈∇ω̂ − l Id, A〉 over the set
UN , the result equals zero since, by (3.5) and the Fundamental Theorem of Calculus,

∫ 1

0
〈∇ω̂ − l Id, A〉(x+ tN)dt = 0 for all x ∈ R2

where we used the embedding R ⊂ R2. Consequently, we obtain the orthogonality property:
∇ω̂ − l Id ⊥L2(UN ) A, for any constant matrix A ∈ R2×2 and thus

|| ∇ω̂ − l Id ||2L2(UN ) + || l Id−R(ω) ||2L2(UN ) = || ∇ω̂ −R(ω) ||2L2(UN )

by Pythagoras. Since || l Id− R(ω) ||2L2(UN ) ≥ 0 and because PN,l is supported on the set
ΩN,l, the lemma is established with c2 = c21c22.
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With Lemma 3.2 we can now prove Theorem 2.1.

Proof of Theorem 2.1. Heron’s formula states that the area λ(4) of the triangle 4 with
side lengths a1, a2, a3 is given by

λ(4) =
1

4

√
(a1 + a2 + a3)(−a1 + a2 + a3)(a1 − a2 + a3)(a1 + a2 − a3). (3.6)

We obtain by first order Taylor approximation of (3.6) at the point ai = 1, i ∈ {1, 2, 3}
that

λ(4)− λ(40,1) =
1

2
√

3

3∑
i=1

(ai − 1) + o

(
3∑
i=1

|ai − 1|

)
as (a1, a2, a3)→ (1, 1, 1).

Since the function λ is smooth in a neighbourhood of (1, 1, 1), we could also express the
remainder term as Big O of the sum of the squares. In the following we only need the
weaker estimate on the remainder. We choose ε so small that the inequality

1

4
√

3

3∑
i=1

(ai − 1) ≤ λ(4)− λ(40,1) (3.7)

is satisfied whenever 1 < ai < 1 + ε. Note that we have divided the constant by two
preceding the sum. Let us fix such an ε and assume that Ωper

N,l is defined by means of this
ε. Using (3.7), we can also estimate the squared side length deviations:

3∑
i=1

(ai − 1)2 ≤ 4
√

3 ε (λ(4)− λ(40,1)). (3.8)

By equation (3.3) from Lemma 3.2 and (3.8), we get an upper bound for ||∇ω̂− l Id||2L2(UN )

in terms of the area differences. By summing up the contributions (3.8) of the triangles
4 ∈ TN , we conclude for all ω ∈ ΩN,l that

|| ∇ω̂ − l Id ||2L2(UN ) ≤ 4
√

3 ε c2

∑
4∈TN

(λ(ω̂(4))− λ(40,1)). (3.9)

Because of (Ω2) and the periodic boundary conditions (2.2), the right hand side in (3.9)
does not depend on ω ∈ ΩN,l. Hence, with ωl ∈ ΩN,l we can compute

∑
4∈TN

(λ(ω̂(4))− λ(40,1)) =
∑
4∈TN

(λ(ω̂l(4))− λ(40,1)) = |TN | λ(40,1)(l2 − 1). (3.10)

The combination of the equations (3.9) and (3.10) gives



Spontaneous breaking of rotational symmetry 13

|| ∇ω̂ − l Id ||2L2(UN ) ≤ 4
√

3 ε c2 |TN | λ(40,1)(l2 − 1). (3.11)

The reference measure δ0⊗λIN\{0} and the set of allowed configurations ΩN,l are invariant
under the reflection φ : ω 7→ (−ω(−x))x∈I and the translations ψb for b ∈ I, defined in
(2.6). As a consequence, the measure PN,l is also invariant under these maps, and therefore
the matrix valued random variables ∇(ω̂(4)) are identically distributed for all 4 ∈ TN .
Thus, for all 4 ∈ TN , one has

EPN,l [ || ∇ω̂ − l Id ||2L2(UN ) ] = |TN | λ(40,1)EPN,l [ |∇ω̂(4)− l Id|2 ].

This equation, together with (3.11), implies

lim
l↓1

sup
N∈N

sup
4∈TN

EPN,l [ |∇ω̂(4)− l Id|2 ] = 0.

By means of the triangle inequality, we see that for all 4 ∈ TN and ω ∈ ΩN,l

|∇ω̂(4)− Id|2 ≤ |∇ω̂(4)− l Id|2 + c2
3(l − 1)2 + 2c3 |l − 1| |∇ω̂(4)− l Id|

with c3 = |Id| > 0. For ω ∈ ΩN,l, the term |∇ω̂(4)−l Id| is uniformly bounded for l ∈ (1, ε)
and N ∈ N, which proves the theorem.
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4 Crystals with defects

We can generalise Theorem 2.1 for crystals with local defects like in [HMR13]. A defect is
a missing point in the configuration ω ∈ Ω∞. We are going to work in a similar model as in
[HMR13] and require that every nearest and next-nearest neighbour of defects is present.
This requirement implies that there is a solid ring around every defect which is formed by
triangles. This ring is solid in the following sense: if the triangles in the ring have small
side lengths greater than one, then the hexagon around the missing value is close to some
regular hexagon with side length one. By this approach we can assure that by merely
requiring present edges to be small, also missing edges can be made small, and hence we
end up with the same configurations as in Theorem 2.1.

In this section we modify the definition of (parametrized) point configurations as follows.
A point configuration in R2 is a function ω : I → R2 ∪ {7}, x 7→ ω(x), which determines
the point configuration {ω(x) | x ∈ I and ω(x) 6= 7} ⊂ R2. The hexagon symbol, 7 6∈ R2,
represents an empty space, this is to say that there is a hole, defect or missing point in the
lattice at x ∈ I whenever ω(x) = 7. The set of all parametrized point configurations is again
denoted by the character Ω = {ω : I → R2 ∪ {7}}. The set of N-periodic configurations
Ωper
N,l consists of parametrized point configurations which satisfy

ω̂(x+Ny) = ω̂(x) + lNy for all x, y ∈ I (4.1)

where the function ω̂ : R2 → R2 is defined by

ω̂(x) =


ω(x) if x ∈ I and ω(x) 6= 7

1
6

∑6
k=1 ω(x+ e

iπk
3 ) if x ∈ I and ω(x) = 7

for x ∈ I. On the closure of any triangle4 ∈ T , the map ω̂ is defined to be the unique affine
linear extension of the above mapping. Note that ω̂ is well defined if and only if nearest
neighbours of missing points are present. The event of admissible, N-periodic configurations
ΩN,l ⊂ Ωper

N,l is defined analogously to the case without defects:

(Ω̃0) Defects are isolated in the sense that ω(x) = 7 and ω(y) = 7 only if |x− y| > 2.

(Ω̃1) |ω(x)− ω(y)| ∈ (1, 1 + ε) for all (x, y) ∈ E with ω(x) 6= 7 and ω(y) 6= 7.

(Ω̃2) The map ω̂ : R2 → R2 is injective.

(Ω̃3) The map ω̂ is orientation preserving, this is to say that det(∇ω̂(x)) > 0 for all4 ∈ T
and x ∈ 4.

The set of admissible, N-periodic configurations ΩN,l is then defined as

ΩN,l = {ω ∈ Ωper
N,l | ω satisfies (Ω̃0)–(Ω̃3)}.
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An important difference from the case without defects is that (Ω̃1) does not require missing
points to have a described distance to other points, for instance in terms of ω̂, which
determines a location for missing points. Also define the sets

Ω∞ = {ω ∈ Ω | ω satisfies (Ω̃0)–(Ω̃3)},
Ω0
∞ = {ω ∈ Ω∞ | ω(0) ∈ {0,7}, and ω(τ) = 0 whenever ω(0) = 7} and

Ω0
N,l = ΩN,l ∩ Ω0

∞.

Now, we construct probability measures PN,m,l on ΩN,l. Recall the translations ψb from
(2.6). In order to prove the defect-case analogue of Theorem 2.1, we have to construct
PN,m,l which are invariant under translations of the (2.6) type. Such an invariance is needed
because we wish that the Jacobians ∇ω̂(4) of the triangles are identically distributed under
PN,m,l, which was also used in the proof of Theorem 2.1 for PN,l. In the case of defects, a first
guess of an analogue of δ0⊗λIN\{0} would be the reference measure (δ0+δ7)⊗(λ+δ7)IN\{0}.
However, the restriction of this measure to ΩN,l is not invariant under the translations

ψ : ΩN,l → ΩN,l, (ω(x))x∈IN 7→

{
(ω(x)− ω(0))x∈IN if ω(0) 6= 7

(ω(x)− ω(τ))x∈IN if ω(0) = 7
(4.2)

where 7− z = 7 for any z ∈ R2. In fact, this is a consequence of the definition 7− z = 7,
which implies that defects can gain infinite weight after the translation. Note that because
of (Ω̃0) the map ψ is well defined.

We follow the construction in [HMR13] and obtain PN,m,l which are shift invariant. Two
configurations ω, ω′ ∈ Ωper

N,l are identified if there is a z ∈ I such that for all x ∈ I we
have ω(x) = ω′(x + Nz). Let ΩN,l be the quotient space with respect to the equivalence
relation given by this identification. We can identify the space ΩN,l with a measurable set
of representatives ΩN,l ⊂ Ωper

N,l. According to [HMR13], a possible choice of a representative

is given by ω ∈ Ωper
N,l for which ω(z) ∈ [0, lN) + τ [0, lN) = ΛlN for the lexicographically

smallest z ∈ {x+ τy | x, y ∈ {0, ..., N − 1}} with ω(z) 6= 7.

We endow Ωper
N,l with the reference measure (λ + δ7)IN . The restriction of this measure

to a measurable set of representatives ΩN,l defines a reference measure µN on ΩN,l. By
construction µN is shift invariant, this is to say θb[µN ] = µN with the shift operator
θb((ω(x))x∈I) = (ω(x− b))x∈I for any b ∈ I.

Let us define the Hamiltonian in analogy to the equation [HMR13, (1.11)]. For m ∈ R∪{∞}
and ω ∈ Ωper

N,l, we define

HN,m(ω) =∞ · 1(ΩN,l)c(ω) +m
∑
x∈IN

1{ω(x)=7} (4.3)

with the complement (ΩN,l)
c of the set ΩN,l. The parameter m plays the role of a chemical

potential. It gives information about the amount of energy that is needed to remove a
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particle. If we integrate exp(−HN,m) with respect to the reference measure µN , we obtain
the partition sum

ZN,m,l =

∫
ΩperN,l

e−HN,m(ω)µN (dω). (4.4)

By (Ω̃1) and ∅ 6= ΩN,l ∩ {ω(x) 6= 7 ∀x ∈ IN}, the partition sum satisfies 0 < ZN,m,l <∞.
We use the convention exp(−∞) = 0. The probability measures PN,m,l are defined to be

PN,m,l(dω) =
1

ZN,m,l
e−HN,m(ω)µN (dω). (4.5)

In the case of m = ∞, we have ψ[PN,m=∞,l] = PN,l with the measures PN,l from Section
2 where ψ denotes the translation (4.2). Note that, in the case m = ∞, the probability
under PN,m=∞,l for a defect to occur is zero. Let us define the translated measures P 0

N,m,l =

ψ[PN,m,l] in general. The remark above yields P 0
N,m=∞,l = PN,l.

Again Theorem 2.3 plays the central role in the proof. The following lemma from [HMR13]
states that the sum of squared distances dist(∇ω̂(4), SO(2))2 over present triangles around
a hole bound the analogue sum over the six missing triangles. To be more precise, we quote
[HMR13, Definition 2.5].

Definition. For x ∈ I, let U0(x) := {4 ∈ T | x ∈ closure(4)} denote the set of all
triangles in T adjacent to x and let N = {τ j | j ∈ Z} denote the set of all points adjacent
to 0. Let further

U1(x) := {4 ∈ T | all corner points of 4 are contained in x+N +N} \ U0(x)

denote the ”second layer” of triangles around x. In the special case x = 0, we abbreviate
U0 := U0(0) and U1 := U0(1).

Lemma 4.1 (Heydenreich, Merkl, Rolles; Lemma 2.6 in [HMR13]). There is a c4 > 0 such
that for all ω ∈ ΩN,l with ω(0) = 7, one has

∑
4∈U0

dist(∇ω̂(4),SO(2))2 ≤ c4

∑
4∈U1

dist(∇ω̂(4),SO(2))2.

We omit the proof of the lemma, and prove the analogue to Theorem 2.1 with defects.

Theorem 4.2. For ε sufficiently small, the constant value of the Jacobian ∇ω̂(4) on the
set 4 ∈ TN satisfies

lim
l↓1

sup
N∈N

sup
4∈TN

EPN,m,l [ |∇ω̂(4)− Id|2 ] = 0

with any norm | · | on R2×2.
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In general, the model parameter ε has to be chosen smaller in Theorem 4.2 than in Theorem
2.1. This choice of ε is also the main idea of the proof.

Proof. Let ω ∈ ΩN,l and x ∈ IN with ω(x) = 7. From Lemma 3.1 and Lemma 4.1 we
conclude that there is a constant c41 > 0 which does not depend on ω and

∑
4∈U0(x)

∑
x 6=y∈S(4)

(|ω̂(x)− ω̂(y)| − 1)2 ≤ c41

∑
4∈U1(x)

∑
x 6=y∈S(4)

(|ω(x)− ω(y)| − 1)2.

Thus we can choose ε so small that the side length deviations (|ω̂(x)− ω̂(y)| − 1)2 become
small enough for inequality (3.7) to be fulfilled for all triangles in TN , even for the ones
which are absent. The rest of the proof is identical to the proof of Theorem 2.1 if we replace
ω by ω̂ in Lemma 3.2; this lemma remains true in the case of defects if ε is small enough
to apply Lemma 3.1. To proceed in the same way, we observe that the random variables
∇(ω̂(4)) are again identically distributed for all 4 ∈ TN under the new measure PN,m,l
as defined in (4.5). This fact is a consequence of the shift- and reflectional invariance of
PN,m,l.

Theorem 4.2 includes Theorem 2.1, since applying Theorem 4.2 to PN,m=∞,l and using the
translation ψ from (4.2) and the translational invariance of the Jacobian ∇ω̂(4), we obtain
the theorem for the push-forwards P 0

N,m=∞,l = PN,l. Note that in this case, ε can be chosen
as in the proof of Theorem 2.1. This observation is the object of the following corollary.

Corollary 4.3. For ε sufficiently small and for all m ∈ R ∪ {∞} one has

lim
l↓1

sup
N∈N

sup
4∈TN

EP 0
N,m,l

[ |∇ω̂(4)− Id|2 ] = 0 (4.6)

with the push-forward P 0
N,m,l = ψ[PN,m,l], which is given by

P 0
N,m,l(dω) =

1

Z0
N,m,l

e−HN,m(ω)
1Ω0

N,l
(ω)µ0

N (dω) (4.7)

where µ0
N =

{(
δ
{0}
0 ⊗ (λ+ δ7){τ}

) ∣∣∣∣
{ω(0)6=7}

+
(
δ
{0}
7 ⊗ δ{τ}0

) ∣∣∣∣
{ω(0)=7}

}
⊗(λ+δ7)IN\{0,τ},

and the partition sum Z0
N,m,l is given by

Z0
N,m,l =

∫
Ω0
N,l

e−HN,m(ω)
1Ω0

N,l
(ω)µ0

N (dω). (4.8)

If m =∞ then P 0
N,m=∞,l = PN,l, and we can choose ε as in Theorem 2.1.
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Proof. We show that P 0
N,m,l is in fact as given in (4.7). The other part of the corollary

follows from Theorem 4.2 because the Jacobian is invariant under the translation ψ. Note
that ψ is defined PN,m,l-almost surely. The Hamiltonian HN,m,l is invariant under ψ,
therefore, it suffices to show that the push-forward of the restricted measure µN |ΩN,l by
ψ is given by µ0

N |Ω0
N,l

times a positive constant. From ψ(ΩN,l) = Ω0
N,l and from Fubini’s

Theorem, we conclude that

ψ[µN |ΩN,l ] = λ(ΛlN ) µ0
N |Ω0

N,l

where λ(ΛlN ) = (lN)2 > 0. Since P 0
N,m,l is a probability measure, we obtain (4.7).

In the next section, we are going to show tightness of (P 0
N,m=∞,l)N∈N. A similar proof

applies to (P 0
N,m,l)N∈N. Likewise, we could carry out every result in Section 5 also with the

measures PN,m,l and an appropriate definition of Gibbs measures in the case of defects. In
this thesis we only discuss infinite-volume arguments in the case without defects.
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5 Infinite-volume limit

5.1 Infinite-volume Gibbs measures

In this section we work again with configurations without defects like in Section 2; defi-
nitions of Ω = {ω : I → R2}, Ωper

N,l, ΩN,l, Ω∞ and especially that of PN,l are given as in
Section 2.

The set of all admissible configurations, Ω∞, should be thought of as the whole state
space. The subspaces Ωper

N,l of configurations with periodic boundary conditions are useful
to prove finite-volume theorems like Proposition 2.5 or Theorem 2.1. One general interest
of Statistical Mechanics, however, aims at infinite-volume measures on Ω. Now, we show
that for all δ > 0, there is a probability measure P on (Ω,F) that is supported on the set
Ω∞ and satisfies the inequality

sup
4∈T

EP [ |∇ω̂(4)− Id|2 ] ≤ δ

from Theorem 2.2. On the other hand, conditioned on the complement Λc of any finite
subset 0 ∈ Λ ⊂ I, the measure P has analogous distribution to PN,l. This is achieved by
passing from a subsequence (PNk,l)k∈N to an infinite-volume limit, using tightness argu-
ments. Subsequently, we will verify that this limit has the desired conditional distributions
and also satisfies the previous inequality. Proofs in this section are very similar to the
proofs in [MR09, Section 4]. We are merely going to show that the same arguments, with
minor changes, also suit the measures PN,l from this thesis.

We define Gibbs measures in analogy with the definitions in [MR09, Section 2]. Throughout
this section, Λ ⊂ I will denote a finite set. The outer boundary set ∂Λ is the set ∂Λ = Λ\Λ
with the closure

Λ = {x ∈ I | ∃y ∈ Λ : |x− y| ≤ 1}.

We denote the set of triangles with corners in Λ by T
(
Λ
)
, this is to say T

(
Λ
)

= {4 ∈
T | S(4) ⊂ Λ}. The set UΛ stands for the closure of ∪T

(
Λ
)
.

For Γ ⊂ I and ω ∈ Ω, let ωΓ be the restriction Γ → R2, x 7→ (ω(x))x∈Γ. For a subset
A ⊂ Ω, the Γ-restrictions in A are denoted by AΓ = {ωΓ | ω ∈ A}. Furthermore, define for
ωΓ1 and ω̃Γ2 with Γ1 ∩ Γ2 = ∅ the map ωΓ1ω̃Γ2 : Γ1 ∪ Γ2 → R2 to be the extension of ωΓ1

and ω̃Γ2 . Hence we have the equality ωΛωΛc = ω. We define the reference measure, νΛ, on
ΩΛ to be

νΛ =

{
δ0 ⊗ λΛ\{0} if 0 ∈ Λ

λΛ if 0 6∈ Λ

where λ denotes the Lebesgue measure on R2. For ωΛ ∈ ΩΛ, ω∂Λ ∈ Ω∂Λ, and a finite set
Λ ⊂ I with 0 ∈ Λ, define the local Hamiltonian with boundary condition ω∂Λ to be
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HΛ(ωΛ|ω∂Λ) =

{
0 if ωΛω∂Λ ∈ Ω∞,Λ
∞ if ωΛω∂Λ 6∈ Ω∞,Λ

where Ω∞,Λ denotes the set of admissible configurations on Λ with boundary conditions on
∂Λ. More precisely, ωΛ ∈ Ω∞,Λ for some ω ∈ Ω if and only if

(i) |ω(x)− ω(y)| ∈ (1, 1 + ε) for all x ∈ Λ and y ∈ Λ with (x, y) ∈ E;

(ii) the map ω̂|UΛ
: UΛ → R2 is injective, and

(iii) the map ω̂ is orientation preserving on UΛ, this is to say that det(∇ω̂(4)) > 0 for all
4 ∈ T

(
Λ
)
.

The partition sum, associated with this local Hamiltonian, is given by

ZΛ(ω∂Λ) =

∫
ΩΛ

e−HΛ(ωΛ|ω∂Λ)νΛ(dωΛ) (5.1)

with the convention e−∞ = 0. Because of the parameter ε in the definition of Ω∞,Λ, the
partition sum is finite for all ω∂Λ ∈ Ω∂Λ. We remark that ZΛ(ω∂Λ) = 0 is possible for
some ω∂Λ ∈ Ω∂Λ. In this definition we integrate over the Boltzmann factor e−HΛ ; we could
also integrate over the characteristic function 1Ω∞,Λ

(ωΛω∂Λ), but we hold to the formalism
of Statistical Mechanics at this point. However, we might write it with the characteristic
function 1Ω∞,Λ

(ωΛω∂Λ) later on.

For ω∂Λ ∈ Ω∂Λ with ZΛ(ω∂Λ) > 0, we define the finite-volume Gibbs measure, PΛ( · |ω∂Λ),
with boundary condition ω∂Λ by the formula:

PΛ(dωΛ|ω∂Λ) =
e−HΛ(ωΛ|ω∂Λ)

ZΛ(ω∂Λ)
νΛ(dωΛ). (5.2)

A probability measure P on (Ω,F) is called an (infinite-volume) Gibbs measure if it satisfies
the DLR-conditions:

P (A|ωΛc) =
1

ZΛ(ω∂Λ)

∫
ΩΛ

1A(ω̃ΛωΛc)e
−HΛ(ω̃Λ|ω∂Λ)νΛ(dω̃Λ) P -a.s. (5.3)

for any A ∈ F and finite Λ ⊂ I containing 0 ∈ I. In particular, this definition includes the
requirement ZΛ(ω∂Λ) > 0 for P -almost all ω ∈ Ω.
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5.2 Proof of Theorem 2.2

Now, we prove that finite-dimensional margins of (PN,l)N∈N are tight, and this sequence
has a subsequence whose finite-dimensional margins converge weakly. The following lemma
is analogue to [MR09, Lemma 4.1].

Lemma 5.1. The finite dimensional-marginal distributions of (PN,l)N∈N are tight. As a
consequence, there is a strictly increasing sequence (Nk)k∈N of natural numbers such that the
finite-dimensional margins of PNk,l converge weakly to the margins of a limiting distribution
Pl on Ω.

Proof. In the proof we follow the steps from the proof of [MR09, Lemma 4.1]. We have for
any finite edge set F ⊂ E:

PN,l(ω(0) = 0 and ∀(x, y) ∈ F : |ω(x)− ω(y)| < 1 + ε) = 1, (5.4)

therefore, we obtain |ω(x)| ≤ dist(0, x)(1+ε) for all x ∈ I PN,l-almost surely with the graph
distance dist(0, x) from 0 to x in the lattice I. Consequently, for every finite Λ ⊂ I, there is
a compact set K ⊂ (R2)Λ such that PN,l(ωΛ ∈ K) = 1 for all N ∈ N, thus finite-dimensional
margins of (PN,l)N∈N are tight. By Prokhorov’s Theorem, applied to the Polish space (R2)Λ,
we conclude that there is a subsequence of (PN,l)N∈N such that its Λ-margins converge
weakly to a distribution on (R2)Λ. Taking these subsequences (PNk(M),l)k,M∈N recursively
for each finite set (IM )M∈N such that (Nk(M + 1))k∈N is a subsequence of (Nk(M))k∈N
and considering the diagonal sequence (PNk(k),l)k∈N, we obtain by Kolmogorov’s Extension
Theorem the measure Pl as the extension of the finite-dimensional weak limits.

In order to show that the measure Pl from Lemma 5.1 is an infinite-volume Gibbs measure,
we show that the finite-dimensional margins of Pl are absolutely continuous with respect
to the corresponding reference measures νΛ. For this purpose, we need a lower bound on
the mass δ0 ⊗ λIN\{0}(ΩN,l).

Lemma 5.2. For all ε ∈ (0, 1] and l ∈ (1, 1 + ε), there is an r = r(ε, l) ∈ (0, 1/2) such that
for N ∈ N, we have

δ0 ⊗ λIN\{0}(ΩN,l) ≥ (πr2)|IN |−1. (5.5)

Proof. For r > 0, we define, like in (3.2) in [HMR13], the set of configurations which are
close to the scaled standard configuration ωl(x) = lx:

SN,l,r = {ω ∈ Ωper
N,l | |ω(x)− ωl(x)| < r for all x ∈ IN}. (5.6)
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For sufficiently small r > 0, depending on ε and l, we conclude, like in the proof of [HMR13,
Lemma 3.1], that SN,l,r ⊂ ΩN,l. To prove this inclusion, we have to show the properties
(Ω1)–(Ω3) for all ω ∈ SN,l,r. Let us compute for (x, y) ∈ EN and ω ∈ SN,l,r:

||ω(x)− ω(y)| − l| = ||ω(x)− ω(y)| − |ωl(x)− ωl(y)||
≤ |ω(x)− ωl(x)|+ |ω(y)− ωl(y)| < 2r.

If we choose 2r < max{l − 1, 1 + ε − l} < 1, then ω satisfies (Ω1). Condition (Ω2) is a
consequence of the inequality 〈v,∇ω̂(x)v〉 > 0 for all v ∈ R \ {0}, and for all x ∈ R2 where
ω̂ is differentiable. This inequality holds for small enough r since ∇ω̂ is close to the identity
uniformly on R2. Hence ω̂ is a bijection onto its image. Here we applied a theorem from
analysis which states that a C1-map f from an open convex domain U ⊂ Rn into Rn with
〈v,∇f(x)v〉 > 0 for all v ∈ Rn\{0} and x ∈ U is a diffeomorphism onto its image. However,
∇ω̂(x) is only piecewise differentiable, but on the straight line L connecting x, y ∈ R2 with
x 6= y, there are only finitely many points z ∈ R2∩L where the curve (ω̂(ty+(1−t)x))t∈(0,1)

is not differentiable. Assume that 〈v,∇ω̂(x)v〉 > 0 holds whenever ω̂ is differentiable in x.
The curve is piecewise linear, and on each of these pieces, the derivative of the curve forms
an acute angle with y − x, therefore the curve cannot be closed. Thus, the condition (Ω2)
is satisfied in the case of a sufficiently small r. Furthermore, condition (Ω3) is satisfied by
ωl, therefore also by ω if r is sufficiently small. Hence SN,l,r ⊂ ΩN,l for some r ∈ (0, 1/2),
and we conclude

δ0 ⊗ λIN\{0}(ΩN,l) ≥ δ0 ⊗ λIN\{0}(SN,l,r) = (πr2)|IN |−1 (5.7)

where the last equality is obtained by integrating over each ω(x) with x 6= 0 which gives
a factor πr2, and considering that ωl(0) = 0 and that the measure δ0 ⊗ λIN\{0} fixes
ω(0) = 0.

The following lemma is proved with the same technique as [MR09, Lemma 4.2]. In this
proof an upper bound for the entropy is derived which implies that the Λ-margin of the
measure PN,l does not concentrate much mass on events with small mass with respect to
the reference measure νΛ. The next lemma is basically due to F. Merkl and S. Rolles (see
[MR09, Lemma 4.2]), we only make minor changes to its proof.

Lemma 5.3. For all finite, connected Λ ⊂ I with 0 ∈ Λ and l ∈ (1, 1 + ε), there are
constants c5(Λ, ε, l) > 0 and c6(Λ, ε) > 0 such that for all large enough N and measurable
A ⊂ ΩΛ with 0 < νΛ(A) < c6, one has

PN,l(ωΛ ∈ A) ≤ c5

− log νΛ(A)
c6

.

Note that the constants on the right side do not depend on N . This uniform bound is an
important capacity of the lemma, which is used in the next corollary.
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Proof. We basically quote the proof of [MR09, Lemma 4.2], only making minor changes to
it in order to fit the measures PN,l.

Let us fix a finite and connected set Λ ⊂ I with 0 ∈ Λ. Let T be an (undirected) spanning
tree of Λ with edge set in E. Here, we can imagine that we work on a quotient space of E
or EN where edges are undirected. Let N be so large that Λ is contained in the box IN .
Let b + T denote the translation of the tree T by b ∈ I and define BN,Λ to be a maximal
subset of IN with the following properties:

(i) 0 ∈ BN,Λ;

(ii) the sets b+ Λ, b ∈ BN,Λ, are pairwise disjoint subsets of IN .

Note that there is a constant c8(Λ) > 0 such that, for all large enough N , one has

|BN,Λ| ≥ c8|IN |. (5.8)

Let us now fix such a set BN,Λ. Furthermore, let us fix an (undirected) spanning tree TN
in EN of IN , which contains the trees b+ T for all b ∈ BN,Λ. Define

Ω̃N,l = {ω ∈ Ωper
N,l | |ω(x)− ω(y)| ≤ 1 + ε for all (x, y) ∈ TN} and (5.9)

Ω̃Λ = {ω ∈ ΩΛ| |ω(x)− ω(y)| ≤ 1 + ε for all (x, y) ∈ T} (5.10)

where we have identified the spanning trees TN and T with their edge sets in EN and E,
respectively. We are going to work with the reference measure ν̃N :

ν̃N (dω) =
1Ω̃N,l

(ω)

νIN (Ω̃N,l)
νIN (dω). (5.11)

The normalisation is chosen so that ν̃N is a probability measure. Note that 0 < νIN (Ω̃N,l) <
∞, and therefore ν̃N is well defined. Let ρ denote the margin of ν̃N on the set ΩΛ. Then ρ
is given by

ρ(dωΛ) =
1Ω̃Λ

(ωΛ)

νΛ(Ω̃Λ)
νΛ(dωΛ). (5.12)

From equation (5.4) we conclude that ΩN,l ⊂ Ω̃N,l and thus PN,l << ν̃N . With ν̃N we can
write for the probability measure PN,l:
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PN,l(dω) =
νIN (Ω̃N,l)

νIN (ΩN,l)
1ΩN,l(ω)ν̃N (dω) (5.13)

with νIN (Ω̃N,l) = δ0⊗λIN\{0}(Ω̃N,l) = (π(1 + ε)2)|IN |−1. With the convention log(0) = −∞
and by Lemma 5.2, we have

log
dPN,l
dν̃N

= log(1ΩN,l) + log
νIN (Ω̃N,l)

νIN (ΩN,l)
≤ log

νIN (Ω̃N,l)

νIN (ΩN,l)
≤ log

(π(1 + ε)2)|IN |−1

(πr2)|IN |−1
(5.14)

ν̃N -almost surely for some 0 < r(ε, l) < 1/2. Hence, taking the expectations, we obtain

EPN,l

[
log

dPN,l
dν̃N

]
≤ c7(|IN | − 1) ≤ c7|IN | (5.15)

with c7 = c7(ε, l) = log((1 + ε)2/r2) > 0, which is an upper bound on the relative entropy
per unit volume. Define the function

ψN : Ωper
N,l → Ω

BN,Λ
Λ ,

ω 7→ ((ω(b+ x)− ω(b))x∈Λ)b∈BN,Λ . (5.16)

Let ΠN,l = ψN [PN,l] denote the push-forward of PN,l with ψN , and let Πb
N,l, for b ∈ BN,Λ,

denote its margins on ΩΛ. Furthermore, let ζN = ψN [ν̃N ] be the push-forward of ν̃N . Note
that ζN = ρBN,Λ is a product measure. The relative entropy cannot increase if we replace
the measures by their push-forwards with respect to ψN . Thus,

EPN,l

[
log

dPN,l
dν̃N

]
≥ EψN [PN,l]

[
log

dψN [PN,l]

dψN [ν̃N ]

]
= EΠN,l

[
log

dΠN,l

dζN

]
. (5.17)

If in the last expression, the measure ΠN,l is replaced by the product of its margins Π̃N,l =∏
b∈BN,Λ Πb

N,l, the entropy cannot increase. Since the measure PN,l is invariant under the

translations ω 7→ ω(b+ x)− ω(b), all marginal distributions Πb
N,l of ΠN,l are equal. Hence,

EΠN,l

[
log

dΠN,l

dζN

]
≥ EΠ̃N,l

[
log

dΠ̃N,l

dζN

]

=
∑

b∈BN,Λ

EΠbN,l

[
log

dΠb
N,l

dρ

]
= |BN,Λ|EΠbN,l

[
log

dΠb
N,l

dρ

]
(5.18)
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for any b ∈ BN,Λ. The last inequality together with (5.15) and (5.17) yields

c7|IN | ≥ |BN,Λ|EΠbN,l

[
log

dΠb
N,l

dρ

]
(5.19)

for any b ∈ BN,Λ. Consequently, from this inequality and from (5.8), we obtain

c7

c8
≥ EΠbN,l

[
log

dΠb
N,l

dρ

]
(5.20)

for every large enough N .

For a given measurable set A ⊂ ΩΛ of probability 0 < ρ(A) < 1, we conclude with the
push-forward measures 1A[Πb

N,m,l] and 1A[ρ] that

EΠbN,l

[
log

dΠb
N,l

dρ

]
≥ E

1A[ΠbN,l]

[
log

d1A[Πb
N,l]

d1A[ρ]

]

= Πb
N,l(A) log

Πb
N,l(A)

ρ(A)
+ Πb

N,l(A
c) log

Πb
N,l(A

c)

ρ(Ac)

≥ −2

e
−Πb

N,l(A) log ρ(A)−Πb
N,l(A

c) log ρ(Ac) ≥ −2

e
−Πb

N,l(A) log ρ(A)

where the inequality x log x ≥ −1
e (for x > 0) was used. Hence, by (5.20) and (5.12), we

have

PN,l(ωΛ ∈ A) = Πb
N,l(A) ≤ c5

− log ρ(A)
≤ c5

− log νΛ(A)
c6

(5.21)

with c5 = c7/c8 + 2/e and c6 = νΛ(Ω̃Λ) .

As a consequence, we obtain that the finite-dimensional margin of the limiting distribution
Pl on Λ ⊂ I is absolutely continuous with respect to the reference measure νΛ.

Corollary 5.4. Let Pl be the infinite-volume limiting distribution from Lemma 5.1. Its
finite-dimensional margins PΛ,l = Pl(ωΛ ∈ · ) are absolutely continuous with respect to the
reference measures νΛ. Furthermore, Pl(Ω∞) = 1, and thus ZΛ(ω∂Λ) > 0 for Pl-almost all
ω ∈ Ω.

Proof. A very similar proof is due to F. Merkl and S. Rolles and was published in [MR09,
Corollary 4.3]; we borrow the main ideas from it. Take a zero set Q ⊂ ΩΛ with respect to
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the reference measure νΛ. For every δ > 0, there is an open set Aδ ⊂ ΩΛ such that Q ⊂ Aδ
and 0 < νΛ(Aδ) ≤ δ. Since, by Lemma 5.1, the margins of some subsequence (PNk,l)k∈N
converge weakly to the corresponding margins of Pl, we conclude from Lemma 5.3 in the
last inequality that

Pl(ωΛ ∈ Q) ≤ Pl(ωΛ ∈ Aδ) ≤ lim inf
k→∞

PNk,l(ωΛ ∈ Aδ) ≤
c5

− log νΛ(Aδ)
c6

from which, by letting δ → 0, we obtain absolute continuity. Note that c5 and c6 do not
depend on N . We remark that Lemma 5.3 was only proved for Λ with 0 ∈ Λ, but choosing
IN large enough such that Λ ⊂ IN , the statement follows for any finite Λ.

In order to show ZΛ(ω∂Λ) > 0 for Pl-almost all ω ∈ Ω, we show Pl(Ω∞) = 1. The set

{ωIN ∈ ΩIN | ∀x, y ∈ IN : |x− y| = 1→ |ωIN (x)− ωIN (y)| ∈ [1, 1 + ε]} ⊂ (R2)IN

is closed, and the set

{ωIN ∈ ΩIN | ∃x, y ∈ IN : |x− y| = 1 and |ωIN (x)− ωIN (y)| ∈ {1, 1 + ε}} ⊂ (R2)IN

has measure zero with respect to νIN , and therefore, also with respect to the margin of Pl
on ΩIN . This implies that (Ω1) holds Pl-almost surely. Under the measure νIN , the event

{ωIN ∈ ΩIN | ∃4 ∈ TN : det(∇ω̂(4)) = 0} ⊂ (R2)IN (5.22)

has measure zero; hence by the continuity of the determinant, property (Ω3) holds Pl-
almost surely. We obtain (Ω2) Pl-almost surely as follows. Note that conv(IN) is a proper
subset of UN . The boundary of

{ω ∈ Ωper
N,l | ω̂|conv(IN) is injective} ⊂ (R2)IN (5.23)

is a zero set with respect to νIN . This observation is true because injectivity can only be
violated if and only if the images of two closed triangles overlap in more than a common
edge. Therefore, the boundary of (5.23) is a subset of the set where two triangles overlap in
some non-common boundary points. This case can only happen if there are three different
vertices in IN which lie on the same line, but this is a zero set with respect to νIN . As a
consequence, the set

{ω ∈ Ω | ω̂|conv(IN) is injective} ⊂ (R2)I
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has measure one with respect to Pl for all N ∈ N. Thus ω̂ : R2 → R2 is injective Pl almost
surely, and as a result we have Pl(Ω∞) = 1.

For all ω ∈ Ω∞ the partition sum ZΛ(ω∂Λ) is positive, which completes the proof.

The following theorem states that the infinite-volume limiting distributions Pl from Lemma
5.1 are infinite-volume Gibbs measures in the sense of equation (5.3).

Theorem 5.5. For all l ∈ (1, 1 + ε), there is an infinite-volume Gibbs measure, Pl, and
a subsequence of (PN,l)N∈N such that all finite-dimensional margins of the measures in the
subsequence converge weakly to the corresponding finite-dimensional margins of the Gibbs
measure Pl.

Proof. We only have to show that the measures Pl from Lemma 5.1 satisfy the DLR-
conditions (5.3). We are going to follow the steps in the proof of [MR09, Theorem 2.1].
Let us fix a finite set Λ ⊂ I which contains 0 ∈ I. By construction we know the DLR
conditions (5.3) for the finite-volume Gibbs measure PN,l instead of Pl. For an arbitrary
but fixed Σ ⊂ I with Λ∪ ∂Λ ⊂ Σ, we fix N ∈ N large enough for Σ ⊂ IN to hold. Then for
any bounded and continuous function f : ΩΣ → R, we can write with the margin PN,l,Σ
of PN,l on ΩΣ:

∫
ΩΣ

ZΛ(χ∂Λ)f(χΣ)PN,l,Σ(dχΣ)

=

∫
ΩΣ

∫
ΩΛ

f(ωΛχΣ\Λ)e−HΛ(ωΛ|χ∂Λ)νΛ(dωΛ)PN,l,Σ(dχΣ)

because for all χ ∈ Ωper
N,l and ωΛ ∈ ΩΛ, we have

1Ω∞,Λ
(ωΛχ∂Λ)1ΩN,l(χ) = 1ΩN,l(ωΛχIN\Λ)1Ω∞,Λ

(χΛ).

Substituting definition (5.1) of the partition sum ZΛ and subtracting the left from the right
side, we obtain

∫
ΩΣ

∫
ΩΛ

(f(χΣ)− f(ωΛχΣ\Λ))e−HΛ(ωΛ|χ∂Λ)νΛ(dωΛ)PN,l,Σ(dχΣ) = 0. (5.24)

By the definition of Ω∞,Λ we have νΛ(∂Ω∞,Λ) = 0, therefore, the integrand in (5.24),

ΩΛ × ΩΣ 3 (ωΛ, χΣ) 7→ [f(χΣ)− f(ωΛχΣ\Λ)]1Ω∞,Λ(ωΛχ∂Λ), (5.25)

is almost everywhere continuous with respect to the reference measure νΛ ⊗ νΣ. Because
the finite-dimensional margin Pl,Σ of Pl on the set ΩΣ is absolutely continuous with respect
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to νΣ by Lemma 5.4, we conclude that the function (5.25) is almost everywhere continuous
also with respect to the measure νΛ ⊗ Pl,Σ. The function (5.25) is bounded because f is
bounded. Now, letting N →∞, we conclude from Lemma 5.1 that

∫
ΩΣ

∫
ΩΛ

(f(χΣ)− f(ωΛχΣ\Λ))e−HΛ(ωΛ|χ∂Λ)νΛ(dωΛ)Pl,Σ(dχΣ) = 0. (5.26)

By the Pl-almost sure positivity of the partition sum (5.1) from Corollary 5.4, the equation
(5.26) is equivalent to the DLR conditions (5.3) because Λ and f were arbitrary.

We have made every preparation for the proof of Theorem 2.2. We are going to show that,
choosing l > 1 sufficiently small, the property in Theorem 2.1 transfers to the limiting
distribution Pl from Theorem 5.1.

Proof of Theorem 2.2. Let δ > 0 be arbitrary. By Theorem 2.1 we choose l > 1 so small
that the inequality

sup
4∈TN

EPN,l [ |∇ω̂(4)− Id|2 ] ≤ δ

holds for all N ∈ N. Let us fix a triangle 4 ∈ T . Like in the proof of Theorem 5.1, we can
find a compact set K ⊂ (R2)S(4) such that

PN,l( (ω(y))y∈S(4) ∈ K ) = 1

for all N ∈ N. Consequently, the continuous map Ω→ R, ω 7→ |∇ω̂(4)−Id|2 is PN,l-almost
surely bounded by the same constant for all N ∈ N. Therefore, by letting N → ∞ and
applying the weak convergence from Lemma 5.1, we conclude that

EPl [ |∇ω̂(4)− Id|2 ] ≤ δ

with the infinite-volume Gibbs measure Pl from Theorem 5.5. Since the triangle 4 ∈ T is
arbitrary, and by Pl(Ω∞) = 1 from Corollary 5.4, we obtain Theorem 2.2.

In the next corollary, we observe that the inequality EP [ |∇ω̂(4) − Id|2 ] ≤ δ enforces a
high average point density on the triangle 4. For a configuration ω ∈ Ω∞ and a triangle
4 ∈ T , define the point density ρ4(ω) of ω on 4 by

ρ4(ω) =
π

8

1

λ(ω̂(4))
.

The point density ρ4 describes the filled area per unit volume on the triangle ω̂(4) in
the following sense: imagine that at each corner of ω̂(4), the centre of a disk with radius
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1/2 is located. If the disks do not overlap, then the proportion of the area inside ω̂(4)
that is taken up by the disks, to the area of ω̂(4) is given by ρ4(ω). For the standard
configuration ω1(x) = x, we obtain on every triangle 4 ∈ T

ρ4(ω1) =
π

2
√

3
=: ρmax,

the density of the densest circle packing in the real plane. The density ρ4(ω) always
satisfies ρ4(ω) ≤ ρmax if ω ∈ Ω∞. In the following corollary, we show that the expected
density with respect to the Gibbs measure Pl is arbitrary close to the density of the densest
circle packing whenever l is chosen sufficiently small.

Corollary 5.6. For all 0 < κ < 1, there is an infinite-volume Gibbs measure P such that

inf
4∈T

EP [ρ4] ≥ κ ρmax.

Proof. For all ω ∈ Ω∞ and 4 ∈ T , we have by (3.2) from Lemma 3.1 that

max
x 6=y∈S(4)

(|ω(x)− ω(y)| − 1) ≤ dist(∇ω̂(4),SO(2)) ≤ |∇ω̂(4)− Id|. (5.27)

Fix δ > 0 and define m = maxx 6=y∈S(4) |ω(x)−ω(y)|. Since λ(ω̂(4)) ≤ (
√

3/4)m2, we have
by (5.27)

ρ4(ω) ≥ π

2
√

3

1

m2
≥ π

2
√

3

1

(|∇ω̂(4)− Id|+ 1)2
. (5.28)

There is a positive constant c9(δ) such that for all x ∈ R

(x+ 1)2 ≤ c9x
2 + 1 +

δ

2
,

and thus (|∇ω̂(4) − Id| + 1)2 ≤ c9|∇ω̂(4) − Id|2 + 1 + δ/2. Choose by Theorem 2.2 an
infinite-volume Gibbs measure P such that sup4∈T EP [ |∇ω̂(4) − Id|2 ] ≤ δ/(2c9). Now,
the corollary follows from Jensen’s inequality applied to the function x→ 1/(x+ 1 + δ/2),
which is convex for nonnegative x. By (5.28) one has

EP [ρ4(ω)] ≥ EP
[
π

2
√

3

1

(|∇ω̂(4)− Id|+ 1)2

]
≥ π

2
√

3
EP

[
1

c9|∇ω̂(4)− Id|2 + 1 + δ/2

]
≥ π

2
√

3

1

EP [c9|∇ω̂(4)− Id|2] + 1 + δ/2
≥ π

2
√

3

1

δ + 1
.
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