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Abstract

In this dissertation, we present results in three distinct models of artificial physical sys-

tems concerning decision making and learning in an abstract sense. The first chapter dis-

cusses crystallization of physical fluids that is not rigorously understood mathematically. We

study crystallization in a simplified model with hard-core interaction, and the absence of lat-

tice defects. Point processes of hard spheres that are enumerated by and locally close to some

three-dimensional rigid lattice are considered, and shown to exhibit long-range orientational

order. This result extends an earlier work to the three-dimensional case which is – to our

knowledge – the first rigorous result on long-range orientation order of hard spheres in three

dimensions. Long-range orientational order is considered as a signature for crystallization.

Relative orientation of neighboring atoms is learned from imposed, tight boundary condi-

tions. In two dimensions, we define a Gibbsian point process with respect to a Poisson point

process by a local, geometry dependent Hamiltonian on hard disks that informally speaking

imposes a constraint that each point has exactly six neighbors in an annulus around them.

Hence, in contrast to the earlier work, we do not require anymore that the process is glob-

ally enumerable by a triangular lattice. Existence of long-range orientational order carries

over, and we obtain the existence of an infinite-volume Gibbs measure on two-dimensional

point configurations that follow the orientation of a fixed triangular lattice arbitrary closely

everywhere.

In the second chapter, we present a model for neural learning that is joint work with

Johanni Brea, Robert Urbanczik, and Walter Senn. How predictions of future events of a
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dynamically changing environment are learned on the neural level and what plasticity rule

underlies their learning is not well understood. Dark clouds are a sign of upcoming rain,

taking out the leash from the cabinet is a sign for our dog that the afternoon walk is about to

begin. Animals can make such predictions. We demonstrate that a neuron which connects

to a given number of presynaptic spiking neurons, which encode the environment, can learn

such predictions following a biologically plausible learning rule. The learning rule allows the

neuron to match its current firing rate to the expected future discounted reward determined

by the environment. In a two-compartment neuron model, even though the plasticity window

is on the scale of tens of milliseconds, predictions on the timescale of seconds can be made.

The third chapter is joint work with Yuri Bakhtin. We study stochastic processes with

random switching, known as piecewise deterministic Markov processes. In general, these

processes are defined by a family of vector fields and a collection of rates of switching between

those vector fields. At each time the system is in some state where it evolves along one of the

vector fields from the family. At random times, the system jumps between states, switching

active vector fields from one to another according to the prescribed Markovian rates. In

the limit of infinite switching rates, the evolution can be effectively described by the law

of large numbers through the averaging of the vector fields involved. We show that a class

of one-dimensional switching processes started at the origin with an unstable zero of the

effective field at the origin escapes a given interval around the origin in a time that increases

logarithmically in the switching rate. The location of escape (left or right edge) can be

interpreted as a decision between two alternatives, and the time of exit as the decision time.
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Chapter 1

Long-Range Orientational Order in

Near-Lattice Gibbsian Hard-Core

Particle Systems

1.1 Introduction

Random hard disk and hard sphere processes are one of the most easily defined, physically

interesting point processes. Rigorous mathematical results about their behavior at high

intensity are limited to two-dimensional systems. It remains an open question whether

a phase transition with possibly orientational symmetry breaking occurs in either two or

three dimensions. If breaking of rotational symmetry in either of these models could be

shown, it would give rise to speculation whether such simple pair interaction could result in

crystallization phenomena. In order to simplify the models, we exclude cavities and other
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crystal defects from the models and study random hard disk and sphere processes that

are locally crystals. In our models, being locally crystal implies being a crystal on a long

range. There is a lower bound on orientational correlation that is uniform in the distance

and this bound can be made arbitrarily large by taking very ”tight” boundary conditions.

Theorem 1.2.1 is the first rigorous result about hard sphere long-range orientational order

to our knowledge. The content of this chapter was first published in April 2018 on https:

//math.nyu.edu/~gaal/, then in [27].

In the previous works [29] and [28], we considered hard disk processes with disks of radius

1/2 that have the structure of a triangular lattice and neighboring disks have an upper bound

on their distance. We showed the existence of natural ”uniform” measures on these allowed

configurations that exhibit uniform long-range orientational order. In the first half of this

chapter, we show that the same arguments apply to some three-dimensional lattices. In

the second half, we show that the result in the two-dimensional case can be formulated

independently of an underlying triangular lattice structure that was explicitly present in the

definition of the probability measures in [29]. Thus we show that being a crystal locally

implies being a crystal on the long range in this particular model. We only require the local,

geometry dependent condition that every point has exactly six points in an annulus with

radii 1 and 1 + α around them. We will have the parameter α in both sections that gives

the maximal distance of neighboring points. This α needs to be sufficiently small so that

some local conditions are fulfilled, however it is on the macroscopic order of about 1/2, so

not particularly small. Fluctuations from the orientation of a fixed lattice however can be

made arbitrary small, in particular they can be made many orders smaller than α.

2
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Similar but not hard-core models were considered in [42] without defects and in [34] and

[4] with lattice defects. Models for dislocations were treated in [15] on the mesoscopic scale

and in [32] for the Ariza-Ortiz model. Introducing bounded, separated missing regions as

defects into our two-dimensional model is possible using similar techniques as in [34]. For

three dimensions, we think it is possible but we have not carried it out. Also the techniques

of Section 1.3 can possibly be carried out in three dimensions, but an analogue of Lemma

1.3.5 is required together with considering boundary conditions, since in three dimensions

several close-packed lattices are possible analogues of the triangular lattice.

These simplified models with well-defined lattice structure and possible defects are mo-

tivated by more natural hard sphere models defined with respect to a Poisson point process

at a given intensity z > 0. The set of Gibbs measures for these natural models is defined

similarly to our definition of Gz in Section 1.3. They are basically sequential limits of Pois-

son point processes in bounded domains – as the domains tend to Rd – conditioned that no

pair of points have distance smaller than one. In these natural models, instead of impos-

ing complex geometry dependent interactions, merely hard-core repulsion is required. As a

consequence, even at high intensity, all kinds of possible lattice defects emerge as soon as

the domain gets large enough. It is believed that in dimensions two and greater there are

multiple Gibbs measures in Gz for high enough intensity z. Their structure is believed to

differ in the typical relative orientation of nearby points. It is shown in [43] that in dimension

two any of these measures in Gz are translational invariant at any intensity z > 0, and in

[44] a logarithmic lower bound is given on the mean square translational displacement of

particles. These results prevent Gibbs measures from having long-range positional order.
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One strategy of showing that Gz is not a singleton for d ≥ 2 and z > 0 high enough, is to

search for a measure in Gz that is not rotational invariant. Existence of such is called the

breaking of rotational symmetry (of the energy function). Showing that such a measure is

supported on a perturbed lattice structure with long-range orientational order would be an

even stronger result which is connected to the widely studied crystallization problem, even

though the crystallization problem is mostly studied for different interactions.

We would also like to mention the recent result [35] that at low intensity disagreement

percolation results imply the uniqueness of the Gibbs state. While at high intensity it is

shown in [3] that hard disks percolate with the percolation radius chosen sufficiently big

which was generalized in [40] to arbitrary percolation radii. Percolation is necessary for

crystallization, but to our knowledge breaking of rotational symmetry cannot be concluded

from it.

1.2 The three-dimensional enumerated model

In this section we show that the arguments of [29] can be applied to some three-dimensional

lattices to obtain similar results as in [29] about long-range orientational order for random

perturbations of such lattices.

1.2.1 Configuration space

We consider three-dimensional lattices with well-defined distance between nearest neighbors

(to be normalized to 1) that fulfill two conditions. Firstly, the nearest neighbor edges of the
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lattice have to define a tessellation of R3 by regular tetrahedra and octahedra. Secondly,

the lattice has to be translational invariant in three linearly independent directions. We

remark that regular tetrahedra and octahedra can be replaced by any rigid polyhedron (a

polyhedron with all faces being triangles) that satisfies an analogue of the rigidity estimates

in Lemmas 1.2.4 and 1.2.5, and their volume has positive partial derivatives with respect to

their edge lengths. We note that by Cauchy’s theorem, the volume is uniquely defined for

rigid polyhedra when the edge lengths are given.

Examples of such lattices are the face-centered cubic lattice and the hexagonal close-

packed lattice. For definitions see [39]. Note that being translational invariant does not

mean that the lattice has to be a Bravais lattice, i.e. of the form Zn1 + Zn2 + Zn3 for some

vectors ni ∈ R3. Bravais lattices are translational invariant but a union of Bravais lattices

might be still translational invariant, however not a Bravais lattice anymore for which the

hexagonal close-packed lattice serves as an example.

Let the set I ⊂ R3 denote one of the lattices that fulfill both criteria. We assume 0 ∈ I

and think of I as an index set which is going to be used to parametrize countable point

configurations in R3. Let I have translational symmetry by the linearly independent vectors

t1, t2, t3 ∈ R3 and define the set T = Zt1+Zt2+Zt3. Define the quotient space In := I/nT for

n ∈ N. We will think of In as a specific set of representatives in the half-open parallelepiped

Un spanned by nt1, nt2, nt3, i.e. Un = n{xt1 + yt2 + zt3 | x, y, z ∈ [0, 1)}.

A parametrized point configuration in R3 is a map ω : I → R2, x 7→ ω(x) that determines

the point configuration {ω(x) | x ∈ I} ⊂ R3. For the set of all parametrized point configura-

tions we introduce the character Ω = {ω : I → R2}. Note that a single point configuration
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{ω(x) | x ∈ I} can be parametrized by many different ω ∈ Ω.

Let α ∈ (0, 1] be an arbitrary but fixed real to be fixed later. An n-periodic parametrized

point configuration with edge length l ∈ (1, 1 + α) is a parametrized configuration ω which

satisfies the boundary conditions:

ω(x+ nti) = ω(x) + lnti for all x ∈ I and i ∈ {1, 2, 3}. (1.2.1)

The set of n-periodic parametrized configurations with edge length l is denoted by

Ωper
n,l ⊂ Ω. From now on we will omit the word parametrized because, in this section, we are

going to work solely with point configurations which are parametrized by I. An n-periodic

configuration is uniquely determined by its values on In. Therefore, we identify n-periodic

configurations ω ∈ Ωper
n,l with functions ω : In → R2.

The bond set E ⊂ I × I contains index-pairs with Euclidean distance one; this is E =

{(x, y) ∈ I × I | |x − y| = 1}. We set En = E/nT , we can think of En as a bond set

En ⊂ In × In. Let T denote the set of convex polyhedra, as in the definition of I, whose

edges are in E and provide a tessellation of R3, which is the Delaunay pre-triangulation, see

[39]. Define Tn = T /nT . Each 4 ∈ T can be triangulated into tetrahedra (not necessarily

uniquely), let us fix such a T -periodic triangulation of T . The set of all (necessarily not all

regular) tetrahedra created this way define a tessellation of R3 and is denoted by triang(T ).

We define triang(Tn) := triang(T )/nT .
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1.2.2 Probability space

By definitions of Ω and Ωper
n,l , we have Ω = (R3)I and can identify Ωper

n,l = (R3)In . Both

sets are endowed with the corresponding product σ-algebras F =
⊗

x∈I B(R3) and Fn =⊗
x∈In B(R3) where B(R3) denotes the Borel σ-algebra on each factor. The event of admis-

sible n-periodic configurations Ωn,l ⊂ Ωper
n,l is defined by the properties (Ω1)− (Ω4):

(Ω1) |ω(x) − ω(y)| ∈ (1, 1 + α) for all (x, y) ∈ E. For ω ∈ Ω we define the extension

ω̂ : R3 → R3 such that ω̂(x) = ω(x) if x ∈ I. On the closure of a tetrahedron 4 ∈ triang(T ),

the map ω̂ is defined to be the unique affine linear extension of the mapping defined on the

corners of that tetrahedron.

(Ω2) The map ω̂ : R3 → R3 is injective (and thus bijective).

(Ω3) The map ω̂ is almost everywhere orientation preserving, this is to say that

det(∇ω̂(x)) > 0 for almost every x ∈ R3 with the Jacobian ∇ω̂ : R3 → R3×3.

(Ω4) The image ω̂(4) of a polyhedron 4 ∈ T is a convex polyhedron.

The conditions (Ω3) and (Ω4) follow from conditions (Ω1) and (Ω2) up to the sign of

the determinant in (Ω3) as it was also remarked in [34] on page 4. Since the proof is more

analytic than stochastic, we also omit the proof and require them as technical conditions.

Define the set of admissible n-periodic configurations, with edge length l as

Ωn,l = {ω ∈ Ωper
n,l | ω satisfies (Ω1)− (Ω4)}.

The set Ωn,l is open and nonempty subsets of (R3)In . The scaled lattice ωl(x) = lx for

x ∈ I and 1 < l < 1 + α is an element of Ωn,l. Any configuration ω ∈ Ωn,l is determined
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by a finite number of locations in R3. Each property (Ω1) − (Ω4) is satisfied after small

enough perturbation of these locations, therefore any ω ∈ Ωn,l has a neighborhood that is

fully contained in Ωn,l, hence the openness of Ωn,l.

Clearly, 0 < δ0 ⊗ λIn\{0}(Ωn,l) < ∞ with the Lebesgue measure λ on R3 and the Dirac

measure δ0 in 0 ∈ R3. The lower bound holds because Ω0
n,l is nonempty and open in (R3)In\{0}

(similarly to the case of Ωn,l above); the upper bound is a consequence of the parameter α

in (Ω1). Let the probability measure Pn,l be

Pn,l(A) =
δ0 ⊗ λIn\{0}(Ωn,l ∩ A)

δ0 ⊗ λIn\{0}(Ωn,l)

for any Borel measurable set A ∈ Fn, thus Pn,l is the uniform distribution on the set Ωn,l

with respect to the reference measure δ0 ⊗ λIn\{0}. The first factor in this product refers to

the component ω(0) of ω ∈ Ω.

1.2.3 Result

We have the following finite-volume result.

Theorem 1.2.1. For α sufficiently small one has

lim
l↓1

sup
n∈N

sup
4∈triang(Tn)

EPn,l [ |∇ω̂(4)− Id|2 ] = 0 (1.2.2)

with the constant value of the Jacobian ∇ω̂(4) on the tetrahedron 4 from the triangulation

of Tn and some norm | · | on R3×3.
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The choice of α has to be such that the volume of any tetrahedron and octahedron with

side lengths in [1, 1 + α] is uniquely minimized by the regular tetrahedron and octahedron

with side length 1 respectively (see proof of Theorem 1.2.1). The central argument is going

to be the following rigidity theorem from [26, Theorem 3.1].

Theorem 1.2.2 (Friesecke, James and Müller). Let U be a bounded Lipschitz domain in

Rd, d ≥ 2. There exists a constant C(U) with the following property: For each v ∈

W 1,2(U,Rd) there is an associated rotation R ∈ SO(d) such that

||∇v −R||L2(U) ≤ C(U)||dist(∇v, SO(d))||L2(U).

This is a generalization of Liouville’s theorem, which states that a map is necessarily

a rotation whose Jacobian is a rotation in every point of its domain. We are going to set

v = ω̂|Un and U = Un which is a bounded Lipschitz domain. The function ω̂|Un is linear on

each triangle 4 ∈ Tn, thus piecewise affine linear on Un. As a consequence, ω̂|Un belongs

to the class W 1,2(Un,R3). The following remark, which also appears in [26] at the end of

Section 3, is essential to achieve uniformity in Theorem 1.2.2 in the parameter n.

Remark 1.2.3. The constant C(U) in Theorem 1.2.2 is invariant under scaling: C(γU) =

C(U) for all γ > 0. Indeed, setting vγ(γx) = γv(x) for x ∈ U , we have ∇vγ(γx) =

∇v(x) and hence ||∇vγ − R||L2(γU) = γd/2||∇v − R||L2(U) and ||dist(∇vγ, SO(d))||L2(γU) =

γd/2||dist(∇v, SO(d))||L2(U). This implies that for the domains Un (n ≥ 1), the corresponding
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constant C(Un) can be chosen independently of n.

1.2.4 Proofs

We are going to show that the L2-distance of the Jacobian ∇ω̂ from the scaled identity

matrix on Un can be controlled by the difference of the areas of ω̂(Un) and Un. Because of

the periodic boundary conditions, λ(ω̂(Un)) does not depend on configurations ω with (Ω2),

thus it provides a suitable uniform control on the set Ωn,l. Then we show that the expected

square distance of ∇ω̂ from the scaled identity matrix can be controlled by the expected

square deviation of the polyhedra’s edge lengths from one. The one should be associated

with the lattice constant of the unscaled lattice.

The following two lemmas from [39] provide the desired rigidity estimate on tetrahedra

and octahedra. They state that the distance from SO(3) of a piecewise affine linear map

defined on the polyhedron can be controlled by terms that measure how the map deforms the

edge lengths of the polyhedron. We conjecture that any convex, rigid polyhedron satisfies

such rigidity estimates via Dehn’s theorem and the Inverse function theorem. However in

this dissertation, as its main concern is not rigidity theory, we will only consider tetrahedra

and octahedra for which these estimates are already proven. Let |M | =
√

tr(M tM) denote

the Frobenius norm of a matrix M ∈ R3×3 and |w| the Euclidean norm of w ∈ R3.

Lemma 1.2.4 ([39] Lemma 3.2.). There is a positive constant C1 such that, for all linear

maps A : R3 → R3 with det(A) > 0 and w1 = (1, 0, 0), w2 = (1
2
,
√

3
2
, 0), w3 = w2 − w1,

10



w4 = (1
2
,
√

3
6
,
√

6
3

), w5 = w4 − w2, w6 = w4 − w1 and l ≥ 1, the following inequality holds:

dist2 (A , SO(3)) := inf
R∈SO(3)

|A−R|2 ≤ C1

6∑
i=1

(|Awi| − 1)2. (1.2.3)

A similar theorem holds for octahedra. Let O denote an octahedron with vertices Pi,

i ∈ {1, . . . , 6}, and edges PiPj for i 6= j (mod 3).

Lemma 1.2.5 ([39] Lemma 3.4.). There is a constant C2 > 0 such that

dist2 (∇u , SO(3)) ≤ C2

∑
i 6=j (mod 3)

(|u(PiPj)| − 1)2 almost everywhere in O, (1.2.4)

for every u ∈ C0(O;R3) such that u is piecewise affine with respect to the triangulation

determined by cutting O along the diagonal P1P4, det(∇u) > 0 a.e. in O, and u(O) is

convex.

Now, we prove the mentioned estimate, which provides control over the L2-distance of

∇ω̂ from the scaled identity matrix in terms of the edge length deviations.

Lemma 1.2.6. For a polyhedron 4 ∈ T , let E(4) denote the set of edges of 4. There is a

constant c > 0 such that for all n ≥ 1 and 1 < l < 1 + α, the inequality

|| ∇ω̂ − l Id ||2L2(Un) ≤ c
∑
4∈Tn

∑
{x,y}∈E(4)

(|ω(x)− ω(y)| − 1)2 (1.2.5)
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holds for all ω ∈ Ωn,l, and hence

EPn,l [ || ∇ω̂ − l Id ||2L2(Un) ] ≤ c
∑
4∈Tn

∑
{x,y}∈E(4)

EPn,l [ (|ω(x)− ω(y)| − 1)2 ] (1.2.6)

where the L2-norm is defined with respect to the scalar product on R3×3 that induces the

Frobenius norm, and | · | denotes the Euclidean norm on R3.

Note that the right side in equation (1.2.5) is strictly positive because of the boundary

conditions (1.2.1) and because l > 1, whereas the left is zero for ω = ωl ∈ Ωper
n,l . Since the

measure Pn,l is supported on the set Ωn,l, (1.2.6) follows from (1.2.5). Also note that c does

not depend on n.

Proof. Let ω ∈ Ωn,l and E(4) be the set of edges of a polyhedron 4 ∈ Tn. By Lemma 1.2.4

and Lemma 1.2.5 we conclude that on every polyhedron 4 ∈ Tn, we have

dist2 (∇ω̂|4, SO(3)) ≤ max{C1, C2}
∑

{x,y}∈E(4)

(|ω(x)− ω(y)| − 1)2

where we used (Ω1), (Ω3) and (Ω4) to apply Lemmas 1.2.4 and 1.2.5 and with the constants

C1, C2 from Lemmas 1.2.4 and 1.2.5. Orthogonality of functions which are nonzero only on

disjoint polyhedra gives

|| dist(∇ω̂, SO(3)) ||2L2(Un) ≤ C
∑
4∈Tn

∑
{x,y}∈E(4)

(|ω(x)− ω(y)| − 1)2

with constant C = max{C1, C2}max{
√

2/12,
√

2/3} where the second factor is the max-
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imum of the volumes of a regular tetrahedron and octahedron. Applying Theorem 1.2.2

about geometric rigidity, we find an R(ω) ∈ SO(3) such that

|| ∇ω̂ −R(ω) ||2L2(Un) ≤ K || dist(∇ω̂, SO(3)) ||2L2(Un),

with a constant K > 0 that does not depend on n by Remark 1.2.3. Due to the periodic

boundary conditions (1.2.1), the function ω̂− l Id is n-periodic in the directions t1, t2, t3, this

is to say

ω̂(x+ nti)− l(x+ nti) = ω̂(x)− lx for all x ∈ R3 and i ∈ {1, 2, 3}. (1.2.7)

By the fundamental theorem of calculus, the gradient of a periodic function is orthogonal

to any constant function, and therefore

|| ∇ω̂ − l Id ||2L2(Un) + || l Id−R(ω) ||2L2(Un) = || ∇ω̂ −R(ω) ||2L2(Un)

by Pythagoras. Since Pn,l is supported on the set Ωn,l, the lemma is established with c =

CK.

With Lemma 1.2.6 we can now prove Theorem 1.2.1.

Proof of Theorem 1.2.1. A generalization of Heron’s formula for tetrahedra gives the volume

λ(4) of the tetrahedron 4 with edge lengths u, v, w, U, V,W (opposite edges denoted with
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the same letter, lower case and capital)

λ(4) =

√
(−a+ b+ c+ d)(a− b+ c+ d)(a+ b− c+ d)(a+ b+ c− d)

192 uvw
(1.2.8)

with

X = (w − U + v)(U + v + w) a =
√
xY Z

x = (U − v + w)(v − w + U) b =
√
yZX

Y = (u− V + w)(V + w + u) c =
√
zXY

y = (V − w + u)(w − u+ V ) d =
√
xyz

y = (V − w + u)(w − u+ V )

Z = (v −W + u)(W + u+ v)

z = (W − u+ v)(u− v +W ).

By first order Taylor approximation of (1.2.8) at the regular tetrahedron 41, denoting the

edge lengths ai, i ∈ {1, . . . , 6} we obtain

λ(4)− λ(41) =
1

12
√

2

6∑
i=1

(ai − 1) + o

(
6∑
i=1

|ai − 1|

)
as ai → 1 for all i.

For the octahedron, we obtain 1
6
√

2
for the volume derivative in one edge b1 at b1 = 1 and

the remaining 11 edges fixed at bi = 1. This can be achieved by dividing the octahedron into
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4 tetrahedrons that all have a common edge d that is a diagonal of the octahedron adjacent

to x. Using the formula (1.2.8) and some elementary geometry of a regular trapezoid to see

that d =
√
x+ 1, we obtain with the regular octahedron 81 of edge length 1:

λ(8)− λ(81) =
1

6
√

2

12∑
i=1

(bi − 1) + o

(
12∑
i=1

|bi − 1|

)
as bi → 1 for all i.

We only need that the partial derivatives of the volume at41 and 81 are positive. By conti-

nuity, in a small neighborhood of the regular polyhedra, increasing one edge length increases

the volume. Therefore we can choose α > 0 from the definition of allowed configurations so

small such that the polyhedra of the tessellation obtain minimal volume as the edge lengths

go to 1. We choose c1 > 12
√

2 and a corresponding α > 0 so small that the inequalities

6∑
i=1

(ai − 1) ≤ c1(λ(4)− λ(41))

12∑
i=1

(bi − 1) ≤ c1(λ(8)− λ(81)) (1.2.9)

are satisfied whenever 1 < ai < 1 + α and 1 < bi < 1 + α. Let us fix such c1 > 0 and α > 0

and assume that Ωper
n,l is defined by means of this α. Using (1.2.9) we can also estimate the

squared edge length deviations:

6∑
i=1

(ai − 1)2 ≤ c1 α (λ(4)− λ(41))

12∑
i=1

(bi − 1)2 ≤ c1 α (λ(8)− λ(81)) (1.2.10)
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By equation (1.2.5) from Lemma 1.2.6 and (1.2.10), we get an upper bound on ||∇ω̂ −

l Id||2L2(Un) in terms of the area differences. By summing up the contributions (1.2.10) of the

polyhedra 4 ∈ Tn, we conclude for all ω ∈ Ωn,l that

|| ∇ω̂ − l Id ||2L2(Un) ≤ c1 α c
∑
4∈Tn

(λ(ω̂(4))− λ(4)). (1.2.11)

As a consequence of (Ω2) and the periodic boundary conditions (1.2.1), the right hand

side in (1.2.11) does not depend on ω ∈ Ωn,l. Hence, with ωl ∈ Ωn,l we can compute

∑
4∈Tn

(λ(ω̂(4))− λ(4)) =
∑
4∈Tn

(λ(ω̂l(4))− λ(4)) = |Un|(l3 − 1). (1.2.12)

The combination of the equations (1.2.11) and (1.2.12) gives

|| ∇ω̂ − l Id ||2L2(Un) ≤ c1 α c |Un| (l3 − 1). (1.2.13)

The reference measure δ0 ⊗ λIn\{0} and the set of allowed configurations Ωn,l are invariant

under the translations

ψb : Ωper
n,l → Ωper

n,l (ω(x))x∈I 7→ (ω(x+ b)− ω(b))x∈I

for b ∈ T . As a consequence the matrix valued random variables ∇(ω̂(4)) are identically

distributed for 4, 4̃ ∈ triang(Tn) such that 4 = 4̃ (mod T ). Thus for any 4 ∈ triang(T1)
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the random variables ∇(ω̂(4+ t))t∈T are identically distributed. Therefore

EPn,l [ || ∇ω̂ − l Id ||2L2(Un) ] =
∑

4∈triang(T1)

|Un(4)| EPn,l [ |∇ω̂(4)− l Id|2 ]

with the regions Un(4) of Un taken up by T -translates of4. Since the proportions |Un(4)|/|Un|

are independent of n for any 4 ∈ triang(T1), this equation together with (1.2.13), implies

lim
l↓1

sup
n∈N

sup
4∈triang(Tn)

EPn,l [ |∇ω̂(4)− l Id|2 ] = 0.

By means of the triangle inequality, we see that for all 4 ∈ triang(Tn) and ω ∈ Ωn,l

|∇ω̂(4)− Id|2 ≤ |∇ω̂(4)− l Id|2 + c2
2(l − 1)2 + 2c2 |l − 1| |∇ω̂(4)− l Id|

with c2 = |Id| > 0. For ω ∈ Ωn,l, the term |∇ω̂(4)− l Id| is uniformly bounded for l ∈ (1, α)

and n ∈ N, which proves the theorem.

1.3 Two-dimensional model with local geometry de-

pendent interactions

In this section, we extend the result of [29] about long-range orientational order in that we get

rid of the a priori enumeration of two-dimensional hard disk configurations by an underlying

triangular lattice and merely impose local geometry dependent conditions by means of a

Hamiltonian H. The conditions impose that hard disks have exactly six neighbors that are
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not too far away. We show that long-range orientational order carries over to infinite-volume

Gibbsian point processes defined by H.

1.3.1 Definitions

Let us cite some definitions from [22]. We equip the plane R2 with its Borel σ-algebra B(R2)

and by λ we denote the Lebesgue measure on (R2,B(R2)). The characters Λ and ∆ will

always denote measurable regions in R2 and the notation ∆ b R2 means that in addition ∆ is

bounded. Consider the set X ⊂ 2(R2) of locally finite point configurations in R2. That means

X ∈ X is a subset X ⊂ R2 and for any ∆ b R2, the intersection X∆ := pr∆(X) := X∩∆ has

finite cardinality |X∆| < ∞. The counting variables N∆(X) := |X∆| generate a σ-algebra

A := σ(N∆ : ∆ b R2) on X . The union of X, Y ∈ X will be denoted by XY , this will

be used when defining the configuration XΛYΛc that agrees with X on Λ and with Y on

the complement of Λ. In a sequence of set operation, unions XY are to evaluate first in

order to reduce brackets. On the measurable space (X ,A), we consider the Poisson point

process Πz with intensity z > 0. The measure Πz is uniquely characterized by the properties

that for all ∆ b R2 under Πz: (i) N∆ is Poisson distributed with parameter zλ(∆), and

(ii) conditional on N∆ = n, the n points in ∆ are independently and uniformly distributed

on ∆ for each integer n ≥ 1. Similarly, configurations XΛ = {XΛ : X ∈ X} in the set Λ

carry the trace σ-algebra A′Λ := A|XΛ
and the reference measure Πz

Λ which is the law of XΛ

if X is distributed according to Πz. We will also need the pullback of A′Λ to X defined by

AΛ := pr−1
Λ A′Λ ⊂ A. Finally, we define the shift group Θ = {θr : r ∈ R2}, where θr : X → X
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is the translation by −r ∈ R2, consequently N∆(θrX) = N∆+r(X) for all ∆ b R2.

We fix α > 0 small enough, the size of α will be specified later. We change the notation

of [29] from ε to α at this point to emphasize that α is fixed and not particularly small. Let

Λ1+α := {x ∈ R2 : |x − y| < 1 + α for some y ∈ Λ} be the (1 + α)-enlargement of Λ. For

X ∈ X we define the Hamiltonian HΛ,Y in Λ with boundary condition Y ∈ X by

HΛ,Y (X) :=



0 if |x− y| > 1 whenever x ∈ XΛYΛ1+α\Λ and y ∈ XΛYΛc for x 6= y,

and for all x ∈ XΛYΛ1+α\Λ : |XΛYΛc ∩ A1,1+α(x)| = 6;

∞ otherwise.

This is to say that HΛ,Y (X) ∈ {0,∞} takes the value 0 if and only if every point of XΛ1+α

has distance greater than one from points in XΛYΛc and has exactly six XΛYΛc-neighbors in

the annulus A1,1+α(x) = {y ∈ R2 : |y−x| ∈ (1, 1 +α)}, otherwise H is defined to be infinity.

Note that the only part of the boundary condition Y relevant for HΛ,Y (X) is in the region

Λ2(1+α) \ Λ.

Definition 1.3.1. We define the partition function Zz
Λ,Y by

Zz
Λ,Y := Πz

Λ{XΛ : HΛ,Y (XΛ) = 0} =

∫
e−HΛ,Y (X)Πz

Λ(dX).

We call a boundary condition Y ∈ X admissible for the region Λ b R2 if 0 < Zz
Λ,Y . We

write XΛ,z
∗ for the set of all these Y .

The set of admissible boundary conditions XΛ,z
∗ is never empty as the l ∈ (1, 1 + α)
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multiply of a triangular lattice with lattice constant one is always in XΛ,z
∗ . We note that

HΛ,Y (∅) = 0 for YΛ1+α = ∅ and also for specifically chosen Λ and possibly nonempty Y . The

partition function Zz
Λ,Y is zero, if neither YΛ1+α\Λ = ∅ nor the boundary condition YΛ1+α\Λ

can be extended to a near triangular lattice configuration in Λ1+α.

Definition 1.3.2. For Y ∈ XΛ,z
∗ , we define the Gibbs distribution in the region Λ b R2 with

boundary condition Y by the formula

γzΛ(F |Y ) =

∫
XΛ

1F (XYΛc)e
−HΛ,Y (X)Πz

Λ(dX)/Zz
Λ,Y ,

where F ∈ A. Note that γzΛ(·|Y ) is a measure on the whole space (X ,A).

In case of YΛα\Λ 6= ∅, the XΛ-marginal of the measure γzΛ(·|Y ) is uniform on the configu-

rations in XΛ that extended YΛα\Λ to a near triangular lattice configuration in Λα. Otherwise

if YΛα\Λ = ∅, then γzΛ(·|Y ) = δYΛc
. Note that (F, Y ) ∈ (A,X ) 7→ γzΛ(F |Y ) is a probability

kernel from (X ,AΛc) to (X ,A), but the distribution γzΛ(·|Y ) has δYΛc
as its marginal on

(XΛc ,A′Λc).

Definition 1.3.3 (infinite-volume Gibbs measure). A probability measure P on (X ,A) is

an infinite-volume Gibbs measure for z > 0 if P (XΛ,z
∗ ) = 1 and

∫
fdP =

∫
XΛ,z
∗

1

Zz
Λ,Y

∫
XΛ

f(XYΛc)e
−HΛ,Y (X)Πz

Λ(dX)P (dY )

for every Λ b R2 and every measurable f : X → [0,∞). We denote the set of infinite-volume

Gibbs measures by Gz.
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Note that the right hand side in the defining equality is equal to EP [γzΛ(f |·)]. Therefore, a

measure P is infinite-volume Gibbs measure, if and only if PγzΛ = P for every Λ b R2, where

the product is understood as taking average with P in the second variable of γzΛ. We can

easily see a degenerated measure δ∅ ∈ Gz, however we will be interested in more interesting

Gibbs measures. In fact, as soon as P (∅) = 0 for a measure P ∈ Gz, we have that P is

supported on hard disk configurations with infinitely many disks.

The Hamiltonian H implements an example of a k-nearest neighbor interaction as ex-

plained in [22, Chapter 4.2.1]. Therefore by [22, Lemma 5.1.], the kernels γzΛ, γz∆ for

Λ ⊂ ∆ b R2 and Y ∈ XΛ,z
∗ satisfy the consistency conditions γzΛ(XΛ,z

∗ |Y ) = 1 and

γz∆γ
z
Λ = γz∆, where the product is understood as product of probability kernels.

1.3.2 Results

We show the following generalization1 of [29, Thm. 4.1].

Theorem 1.3.4. Let 0 < α be small enough (such that Lemma 1.3.5 and Theorem 1.3.6

hold true for the choice of this α). Then for every 2/(
√

3(1 + α)2) < ρ < 2/
√

3 (the density

of centers in the densest packing of disks with diameter 1), there is a measure Pρ ∈ ∩z>0Gz

such that

(i) Density = ρ: For any Λ b R2, we have EPρ [NΛ] = ρλ(Λ).

(ii) Translational invariance: The measure Pρ is translational invariant in any direction in

1The wording of Theorem 1.3.4 up to some minor modification in the definition of H was suggested by
Franz Merkl in a talk at a conference (Trends in Mathematical Crystallization) held at Warwick University
in May 2016
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R2, i.e. Pρ ◦ θ−1
r = Pρ for any r ∈ R2.

(iii) Long-range orientational order: Let x ∈ X be the point with the smallest distance from

the origin. It is a.s. unique. We have Pρ(NA1,1+α(x) = 6) = 1. Choose a random

neighbor y ∈ X of x (i.e. 1 < |y − x| < 1 + α) uniformly distributed among all six

neighbors. Then as ρ ↑ 2/
√

3, the law of y−x w.r.t. Pρ converges weakly to the uniform

distribution on the 6th roots of unity in C =̂ R2.

Note that by translational invariance of Pρ, property (iii) holds when initially picking the

closest point x to any reference point x0 ∈ R2 instead of the origin. Hence the long-range

orientational order, as neighbors of x position themselves close to translates of the 6th roots

of unity. The choice of α will be made somewhat explicit in the proof of Lemma 1.3.5. The

set of Gibbs measures Gz is most likely independent of z > 0, however we will not pursue

the proof of this statement as it leads to geometric considerations that are not in the center

of our analysis.

1.3.3 Proofs

For a configuration X ∈ X , we say that H(X) = 0 if for all x, y ∈ X, we have |x − y| > 1

and |X ∩ A1,1+α(x)| = 6. This is the same as having HΛ,X(X) = 0 for any Λ b R2.

For a configuration ∅ 6= X ∈ X with H(X) = 0, we can define a simplicial complex K(X)

consisting of zero, one and two cells defined as follows. The set of zero cells K0(X) is X ⊂ R2.

The set of one cells K1(X) are edges between zero cells of distance between 1 and 1 +α, and

the two cells are triangles with sides in K1(X). We will see in the following lemma, that by
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definition of H and some geometric considerations, for α small enough, the graph defined by

the one and two skeleton of this complex is locally, and therefore also globally isomorphic to

the triangular lattice I = Z + τZ with τ = e
iπ
3 with edge set E = {{i, j} ⊂ I : |i− j| = 1}.

The set of triangles surrounded by three edges in E is denoted by T , these are two cells if

we regard I as a simplicial complex.

The most important lemma linking the theorem above to [29, Thm. 4.1] is the following.

Lemma 1.3.5. With the choice of a small enough α, we have for any configuration X ∈ X

with H(X) = 0, that the graph defined by the one and two skeletons of K(X) is isomorphic

to the triangular lattice I. In other words, there is a bijective map ω : I → X such that for

all i, j ∈ I: |i− j| = 1 if and only if |ω(i)− ω(j)| ∈ (1, 1 + α).

Later on, we will choose α small enough such that Lemma 1.3.5 and Theorem 1.3.4 both

work for that α. From the proof of the lemma it will be obvious that the choice of α does

not need to be particularly small for it (and any smaller choice) to work.

Proof. We define for i ∈ I its closest neighborhood N(i) ⊂ I by N(i) = {j ∈ I : |i− j| ≤ 1}.

Let X ∈ X such that H(X) = 0. A map ω : N(i)→ X is called a local isomorphism at i if

for all j, k ∈ N(i), we have |j − k| = 1 if and only if |ω(j) − ω(k)| ∈ (1, 1 + α). By taking

α > 0 small enough, we can ensure that for all i ∈ I and x ∈ X there is a local isomorphism

ω at i such that ω(i) = x. To see this, observe that as α → 0, for every y ∈ A1,1+α(x)

there are exactly two points y1, y2 ∈ A1,1+α(x) \ {y} such that |yi − y| → 1, for other

z ∈ A1,1+α(x)\{y}, we have lim infα→0 |z−y| ≥
√

3. Since we know that |X∩A1,1+α(y)| = 6,

a simple geometric consideration related to the kissing problem, gives that y1, y2 ∈ A1,1+α(y),
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since if yi 6∈ A1,1+α(y) for i ∈ {1, 2}, for α small enough there was not enough space to place

6 points in A1,1+α(y) having distance bigger than 1 from each other and from yi. To be more

precise, for all i ∈ I and x ∈ X there will be twelve such local isomorphisms taking rotations

and reflection into account. We fix α small enough such that the local isomorphism property

holds.

Let us construct a map ω : I → X as follows. We fix an arbitrary x0 ∈ X and define

ω|N(0) to be one of the six orientational preserving local isomorphism at 0 with ω(0) = x0.

Fix a spanning tree T of I. For each i ∈ I, there is a unique path on nearest neighbors in

T connecting 0 to i. Since there are local isomorphism at each pair of points of I and X,

we can successively, uniquely extend ω to vertices of T by choosing the unique of the six

orientation preserving local isomorphisms that is consistent with T . This is to say that if

for a neighbor i of j in T , we already assigned a point ω(i) then we already choose a local

isomorphism at i with i 7→ ω(i). Let us assign j to the point in X which is determined by

this local isomorphism. Now, there is only one local isomorphism at j, which is consistent

with the local isomorphism chosen at i in the sense that i has identical images under the two

local isomorphisms. We use this local isomorphism to proceed with the construction and

map all neighbors of j in T into X.

It remains to show that the map ω : I → X is an isomorphism. To conclude ω is an

isomorphism onto its image, we fix a loop γ starting and ending in i ∈ I composed of a path

in T and an edge between i and one of its neighbors in I to which it is not connected in

T . We need to show that the map induced along γ with an initial orientational preserving

local isomorphism ω|N(i) at i, maps to a loop in K(X) starting and ending in ω(i). To
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this end we can show a seemingly more general but equivalent statement. Take any loop

γ = (i0, i1, i2, . . . , in) at 0 ∈ I (i.e. i0 = in = 0) and x ∈ X, fix a local isomorphism at 0 with

0 7→ x and show that the map induced along γ maps γ to a loop ω(γ) in X at x. Here ω is

locally defined along the curve γ.

We can deform the loop γ to the boundary of a two cell that contains 0 by successively

”removing” two cells that intersect γ and are inside of it. By removing a two cell, we mean

one of the following. Two subsequent edges (ik−1, ik), (ik, ik+1) of γ, we can exchange for the

unique edge (ik−1, ik+1) if |ik−1 − ik+1| = 1, or we can exchange one edge (ik, ik+1) of γ for

two edges (ik, j) and (j, ik+1) in I. For every such transformation of γ, we obtain a modified

γ′ and a map ω′ that is uniquely determined by the local isomorphism at ik and is the unique

extension of the local isomorphism at 0 along γ′. Note that ω = ω′ on the domain that they

are both defined and ω(γ) is closed if and only if ω′(γ′) is. When after removing finitely

many two cells, we arrive at γ′ = (0, i, j, 0) being the boundary of a two cell that contains

the origin. Since ω′|γ′ should be the unique extension of the local isomorphism at 0 along γ,

we see that ω′(γ′) is closed and therefore so is ω(γ).

We showed that for neighbors i, j in I, also ω(i), ω(j) are neighbors in X. To obtain

the converse statement and the injectivity of ω, we repeat the preceding procedure for the

same map ω but with exchanged roles of I and X. This concludes the proof that ω is an

isomorphism onto its image.

It remains to show that ω is surjective. Take now a curve γ̂ in K(X) from x0 to some

y ∈ K(X). Note that K(X) is a connected graph, as for small enough α and x 6= y we can

always find a neighbor z of x which is closer to y than x. The curve γ̂ corresponds to a curve
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γ in I from 0 to some i ∈ I. Applying the procedure from above to the concatenation of the

path from 0 to i in T and the reverse of γ, we see that ω(i) = y.

Lemma (1.3.5) can be also proved with the formalism of Čech cohomology using the

de Rham isomorphism and can be generalized to configurations with point defects (missing

points). The usefulness of the Čech cohomology and de Rham’s theorem was pointed out to

us by Franz Merkl. We decided to give another proof using less formalism.

To construct Pρ, we use measures on periodic configurations. For l > 1 and n ∈ N,

let us define measures Pn,l on n-periodic configurations as in [29]. A periodic, enumerated

configuration ω ∈ Ωper
n,l is a map I → R2 such that Theorem 1.3.6 holds true for this choice

of α.

ω(i+ nj) = ω(i) + lnj for all i, j ∈ I. (1.3.1)

It suffices to define an n-periodic, enumerated configuration on a set of n2 representatives

In ⊂ I as equation (1.3.1) uniquely defines the configuration on the complement (In)c. The

event of admissible, n-periodic, enumerated configurations Ωn,l ⊂ Ωper
n,l is defined by the

properties (Ω1)− (Ω3):

(Ω1) |ω(i)− ω(j)| ∈ (1, 1 + α) for all {i, j} ∈ E.

For ω ∈ Ω we define the extension ω̂ : R2 → R2 such that ω̂(i) = ω(i) if i ∈ I, and on the

closure of any triangle 4 ∈ T , the map ω̂ is defined to be the unique affine linear extension

of the mapping defined on the corners of 4.

(Ω2) The map ω̂ : R2 → R2 is injective.

(Ω3) The map ω̂ is orientation preserving, this is to say that det(∇ω̂(x)) > 0 for all
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4 ∈ T and x ∈ 4 with the Jacobian ∇ω̂ : ∪T → R2×2.

Define the set of admissible, n-periodic, enumerated configurations as

Ωn,l = {ω ∈ Ωper
n,l | ω satisfies (Ω1)–(Ω3)}.

Let the probability measure Pn,l be

Pn,l(A) =
δ0 ⊗ λIn\{0}(Ωn,l ∩ A)

δ0 ⊗ λIn\{0}(Ωn,l)

for any Borel measurable set A ∈ Fn =
⊗

i∈In B(R2), thus Pn,l is the uniform distribution

on the set Ωn,l with respect to the reference measure δ0 ⊗ λIn\{0}. The first factor in this

product refers to the component ω(0). The parameter l in the definition of Ωn,l and Pn,l

controls the density of periodic configurations such that ρ = 2
l2
√

3
. We quote Theorem 4.1

from [29] which will be the major ingredient of the proof of Theorem 1.3.4.

Theorem 1.3.6. For any α > 0 small enough one has

lim
l↓1

sup
n∈N

sup
4∈T

EPn,l [ |∇ω̂(4)− Id|2 ] = 0 (1.3.2)

with the constant value of the Jacobian ∇ω̂(4) on the set 4 ∈ T .

We note that the theorem holds for any α ∈ (0,
√

3 − 1), however we omit the proof of

this which is just a more careful consideration of arguments in the proof of [29, Theorem 4.1]

and will refer to small enough α. The main observation needed for this explicit range of α

where the theorem holds is, that the area of triangles with side lengths in the range [1,
√

3)
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is uniquely minimized by the regular triangle with side length 1. This observation is then

utilized like in the similar proof of Theorem 1.2.1 in the 3D case. We note that Theorem

1.3.6 might work with α ≥
√

3− 1, however looking for the optimal upper bound is not the

concern of this dissertation.

In the following we construct Pρ as a limit of translational invariant versions of Pn,l and

show that this measure is a Gibbs measure in Gz for any z > 0. We follow ideas from [22] to

construct a limiting measure. Fix l > 1 and define the measures Gn on (X ,A) by specifying

its marginal (Gn)Λn on (XΛn ,A′Λn)

(Gn)Λn =

(
1

λ(Λn)

∫
Λn

Im[Pn,l] ◦ θr dr

)
Λn

,

with the image measure Im[Pn,l] of Pn,l under the map Im : ω 7→ {ω(x) : x ∈ I} and the

domain Λn = l{x + yτ : x, y ∈ [−n/2, n/2)}. The averaging over r ∈ Λn is necessary to

obtain a translational invariant measure on the torus, since ω(0) = 0 holds Pn,l−a.s.. The

measure Gn is then defined by having i.i.d. projections on the sets {Λn+ inl}i∈I , which form

a tiling of R2. In order to have translational invariant probability measures on (X ,A), we

consider the averaged measures

Ĝn =
1

λ(Λn)

∫
Λn

Gn ◦ θr dr.

By definition and the periodicity of Gn, Ĝn are translational invariant. We will show that

the sequence (Ĝn)n∈N is tight in the topology of local convergence on translational invariant
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probability measures on X generated by P →
∫
fdP for functions f that are AΛ-measurable

for some Λ b R2. Such functions we call local and denote the set of local functions by L.

The only difference to the definitions after Lemma 5.1. in [22] are in the nature of the

measures (Gn)Λn . In our case (Gn)Λn are measures that inherit geometric constraints from

the structure of Pn,l that are defined on toruses of different size. In [22] on the contrary, the

authors use a measures Gz
Λn,ω̄

that have fixed boundary condition ω̄ on the complement of

Λn.

For a shift invariant probability measure P on (X ,A) and Λ b R2 define the measure

PΛ := P ◦ pr−1
Λ and the relative entropy w.r.t. Πz

Λ as

I(PΛ|Πz
Λ) :=


∫
f ln fdΠz

Λ if PΛ << Πz
Λ with density f

∞ otherwise.

The specific entropy of P w.r.t. Πz is then defined by

I(P ) := lim
n→∞

1

λ(∆n)
I(P∆n|Πz

∆n
),

where ∆n b R2 is a cofinite increasing sequence of sets. We refer to [30] and [31] for

existence and properties of the specific entropy. We will set z = 1 and compute entropies

relative to Π1
∆n

. By [31, Proposition 2.6], the sublevel sets of I are sequentially compact in

the topology of local convergence. Therefore, we only need to show that the specific entropies

of the measures {Ĝn}n∈N are bounded by some constant. We start with citing and repeating

the proof of a proposition from [28, Lemma 5.2] that provides lower bound on the partition
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sum.

Proposition 1.3.7. For all α ∈ (0, 1] and l ∈ (1, 1 + α), there is an r = r(α, l) ∈ (0, 1/2)

such that for n ∈ N, we have

δ0 ⊗ λIn\{0}(Ωn,l) ≥ (πr2)|In|−1. (1.3.3)

Proof. For r > 0, we define, like in (3.2) in [34], the set of configurations which are close to

the scaled, enumerated, standard configuration ωl(i) = li for i ∈ I:

Sn,l,r = {ω ∈ Ωper
n,l | |ω(i)− ωl(i)| < r for all i ∈ I}. (1.3.4)

For sufficiently small r > 0, depending on α and l, we conclude, like in the proof of

[34, Lemma 3.1], that Sn,l,r ⊂ Ωn,l. To prove this inclusion, we have to show the properties

(Ω1)–(Ω3) for all ω ∈ Sn,l,r. Let us compute for (i, j) ∈ E and ω ∈ Sn,l,r:

||ω(i)− ω(j)| − l| = ||ω(i)− ω(j)| − |ωl(i)− ωl(j)||

≤ |ω(i)− ωl(i)|+ |ω(j)− ωl(j)| < 2r.

If we choose 2r < max{l − 1, 1 + α − l} < 1, then ω satisfies (Ω1). Condition (Ω2) is a

consequence of the inequality 〈v,∇ω̂(x)v〉 > 0 for all v ∈ R \ {0}, and for all x ∈ R2 where

ω̂ is differentiable. This inequality holds for small enough r since ∇ω̂ is close to the identity
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uniformly on R2. Hence ω̂ is a bijection onto its image. Here we applied a theorem from

analysis which states that a C1-map f from an open convex domain U ⊂ Rn into Rn with

〈v,∇f(x)v〉 > 0 for all v ∈ Rn \{0} and x ∈ U is a diffeomorphism onto its image. However,

∇ω̂(x) is only piecewise differentiable, but on the straight line L connecting x, y ∈ R2 with

x 6= y, there are only finitely many points z ∈ R2∩L where the curve (ω̂(ty+ (1− t)x))t∈(0,1)

is not differentiable. Assume that 〈v,∇ω̂(x)v〉 > 0 holds whenever ω̂ is differentiable in x.

The curve is piecewise linear, and on each of these pieces, the derivative of the curve forms

an acute angle with y− x, therefore the curve cannot be closed. Thus, the condition (Ω2) is

satisfied in the case of a sufficiently small r. Furthermore, condition (Ω3) is satisfied by ωl,

therefore also by ω if r is sufficiently small. Hence Sn,l,r ⊂ Ωn,l for some r ∈ (0, 1/2), and we

conclude

δ0 ⊗ λIn\{0}(Ωn,l) ≥ δ0 ⊗ λIn\{0}(Sn,l,r) = (πr2)|In|−1

where the last equality is obtained by integrating over each ω(i) with i 6= 0 successively

along a fixed spanning tree of In which gives a factor πr2, and considering that ωl(0) = 0

and that the measure δ0 ⊗ λIn\{0} fixes ω(0) = 0.

Proposition 1.3.8. The set {I(Ĝn) : n ∈ N} is bounded, thus the set {Ĝn : n ∈ N} is

sequentially compact in the topology of local convergence. Therefore, there is a sequence

nk → ∞ and a shift invariant measure Pρ on (X ,A) such that limk→∞
∫
fdĜnk =

∫
fdPρ

for any f ∈ L.
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Proof. As also noted in the proof of [22, Proposition 5.3], the definition of Ĝn implies that

Iz(Ĝn) =
1

λ(Λn)
I
(
(Gn)Λn|Π1

Λn

)
.

The relative entropy I
(
(Gn)Λn|Π1

Λn

)
can be explicitly computed as follows. The measure

(Gn)Λn is supported on configurations that have n2 points in Λn and if Λn is folded into

a torus, then each point x has exactly six neighbors in the annulus A1,1+α(x) around it

and no points closer than distance one. These configurations Xn,l are images of enumerated

configurations Xn,l = (Im Ωn,l)Λn . By Lemma 1.3.5, (Gn)Λn is the uniform distribution

on these configurations with respect to Π1
Λn

. The density of (Gn)Λn w.r.t. Π1
Λn

is given by

f = 1Xn,l/Π
1
Λn

(Xn,l). To find the constant Π1
Λn

(Xn,l) more explicitly, consider the expectation

Π1
Λn [g] = e−λ(Λn)

∞∑
k=0

∫
Λkn

1

k!
g({x1, . . . , xk}) λk|Λkn(dx1, . . . , dxk)

Consequently, we have

Π1
Λn(Xn,l) =

e−λ(Λn)

n2
λ(Λn) δ0 ⊗ λIn\{0}(Ωn,l).

This follows since a factor e−λ(Λn)

(n2)!
comes from the density of Π1

Λn
conditioned on n2 points with

respect to λ(n2)|
Λ

(n2)
n

(dx1, . . . , dx
2
n). Then conditioned on the position of x1, the volume of

the allowed configurations by their shift invariance on the torus is (n2−1)! δ0⊗λIn\{0}(Ωn,l),

furthermore the first point can be distributed uniformly in Λn. The relative entropy is

I
(
(Gn)Λn|Π1

Λn

)
= − ln

(
Π1

Λn
(Xn,l)

)
and the specific entropy can be bounded using Proposi-
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tion 1.3.7 and λ(Λn) = n2l2
√

3/2 for big enough n, we obtain

I ((Gn)Λn) = −
ln
(
Π1

Λn
(Xn,l)

)
λ(Λn)

= 1 +
n2

λ(Λn)
− ln (λ(Λn))

λ(Λn)
−

ln
(
δ0 ⊗ λIn\{0}(Ωn,l)

)
λ(Λn)

≤ 1 +
n2

λ(Λn)
− ln (λ(Λn))

λ(Λn)
− |In − 1| ln(πr2)

λ(Λn)

≤ 1 +
2− 2 ln(πr2)

l2
√

3
.

The next proposition shows that Pρ is an infinite-volume Gibbs measure. Note that Ĝn

and Λn depend on l > 1 which we fixed previously.

Proposition 1.3.9. The measure Pρ is an infinite-volume Gibbs measure Pρ ∈ ∩z>0Gz.

Proof. Fix Λ b R2, z > 0 and ρ < 2/
√

3 large enough such that 2/(
√

3(1+α)2) < ρ where α

is such that Lemma 1.3.5 holds with that α. Let l > 1 such that ρ = 2/(l2
√

3). For X ∈ X ,

let X̃n be the periodic extension of XΛn to X , i.e. X̃n = ∪i∈IXΛn + lni. Let κ > 0 be so big

such that Λκ \Λ contains a connected ring of triangles from K2(X̃n) for Gn-almost all X for

all n ∈ N. Consequently, for all n ∈ N large enough such that Λκ ⊂ Λn, the number of points

in Λ conditioned on XΛc is Gn-almost surely determined by the configuration in Λκ \Λ. The

measure (Gn)Λn is the uniform distribution of enumerable, allowed configurations with n2

points on the torus. By Lemma 1.3.5, the conditional distribution of XΛ given XΛc under

Gn is therefore the uniform distribution on configurations XΛ such that HΛ,XΛc
(XΛ) = 0.

Uniform distribution makes sense, as the number of points in Λ is almost surely constant

with respect to the conditioned measure. Therefore, the factorized version of the conditional
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distribution of Gn given AΛc is given by γΛ(·|·), this is to say that

Gn(F ) =

∫
X
γΛ(F |Y )Gn(dY ) (1.3.5)

for any F ∈ A and n ∈ N big enough for Λκ ⊂ Λn. Since z is fixed, we can omit it as a

superscript in γz.

The rest of the proof is as the proof of [22, Prop. 5.5.]. Define Λ◦n := {r ∈ R2 : Λκ + r ⊂

Λn} and the (subprobability) measures

Ḡn :=
1

|Λn|

∫
Λ◦n

Gn ◦ θ−1
r dr.

Then
∫
fdĜn −

∫
fdḠn → 0 by the same argument as in [31, Lemma 5.7], therefore Pρ can

also be seen as an accumulation point of the sequence (Ḡn). Let F ∈ ∪∆bR2A∆ be a local

set, using (1.3.5), we obtain for r ∈ Λ◦n

Gn ◦ θ−1
r (F ) =

∫
X
γΛ(F |Y )Gn ◦ θ−1

r (dY ).

Therefore averaging over r ∈ Λ◦n gives

Ḡn(F ) =

∫
X
γΛ(F |Y )Ḡn(dY ). (1.3.6)

Since the integrand on the right is a local function of Y , we can set n = nk and let k →∞,

that gives (1.3.6) for Pρ instead of Ḡn. Since local sets generate the σ-algebra A, (1.3.6)
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holds for Pρ and F ∈ A, which by monotone convergence shows that Pρ is an infinite-volume

Gibbs measure.

Proof of Theorem 1.3.4. In Propositions 1.3.9 and 1.3.8, we showed the existence of a trans-

lational invariant measure Pρ ∈ ∩z>0Gz which is the local limit of the measures (Gnk)k≥1,

therefore Pρ satisfies property (ii). Property (i) holds as it can be expressed by a local

function and EGnk [|X ∩ B|] = ρλ(B) for any k ≥ 1 by the periodic boundary conditions.

Similarly, property (iii) can be expressed by local functions depending on {x0, x1, ..., x6}∩Λn,

where x0 is the closest random point to the origin and xi is the ith closest point to x0. For

n large enough we have Gnk(|{x0, x1, ..., x6} ∩ Λn| = 7) = 1 for any k ≥ 1 and therefore

Pρ(|{x0, x1, ..., x6} ∩ Λn| = 7) = 1. By Theorem 1.3.6 we have

lim
ρ↑2/

√
3
sup
k≥1

EGnk

[
6∑
i=1

|∇ω̂(4i)− Id|2
]

= 0, (1.3.7)

where {4i}1≤i≤6 are the random six triangles in T such that one of their vertices is mapped

to x0 under ω. Let f : C6 → R be continuous, bounded and permutation invariant. We use

the natural identification of topological spaces C=̂R2. Let yi = xi − x0. By continuity of f ,

there is a constant c > 0 such that

∣∣f(y1, . . . , y6)− f(eiπ/3, ei2π/3, . . . , ei2π)
∣∣ ≤ c

6∑
i=1

|∇ω̂(4i)− Id|2 (1.3.8)
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Gnk-a.s. for any k ≥ 1. Combining equations (1.3.7) and (1.3.8), we obtain that

lim
ρ↑2/

√
3
EPρ

[∣∣f(y1, . . . , y6)− f(eiπ/3, ei2π/3, . . . , ei2π)
∣∣] = 0

which concludes the proof of property (iii).
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Chapter 2

Value Learning of Spiking Neurons

2.1 Introduction

In the context of reinforcement learning, we consider an agent (in Section 2.3 represented

by a two-compartment neuron) being exposed to a changing environment. The environment

provides sensory stimulation (e.g. odors) in terms of presynaptic activity to a dendritic

compartment, and reward information (e.g. encoded by a dopamine or octopamine firing

rate) rM
t at each discrete time step t to the soma. This reward information is encoded by

nudging conductances gE
t and gI

t such that the matching potential UM
t , which is elevated

in case of a reward and decreased in case of a punishment (as defined in [46]), yields an

instantaneous firing rate rM
t = φ(UM

t ).

We wish to adapt the synaptic strengths on the dendritic compartment such that the

instantaneous firing rate, φ(Ut), in some form approximates the total discounted future

reward, originally defined as RM
t =

∑∞
i=0 γ

irM
t+i, with some discount factor γ ∈ [0, 1) (with
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the convention 00 = 1). We propose a learning rule that achieves this goal. We analyze

the rule’s basic properties and demonstrate it in computer simulations. This part of the

dissertation is joint work with Johanni Brea, Robert Urbanczik and Walter Senn [18].

2.2 The case of clamping

The case of clamping refers to a simplified model layout in which the reward rM
t is intrinsically

available to the synapses. In Section 2.3, we turn our attention to a two-compartment neuron

model by R. Urbanczik and W. M. Senn, [46], where reward is driven by nudging. The two-

compartment neuron model has the advantage that nudging, thus also the reward, might be

provided by a neuronal network which is a biologically more reasonable model. It also enables

predictions on the behavioral time scale of seconds, even though the plasticity window is tens

of milliseconds.

The case of clamping captures the most important ideas of value learning in a simplified

model. For this reason, we recognize the importance of this simplification on its own. Most

strategies which are discussed in the present section can be also used later in Section 2.3.

2.2.1 The model

In this model, we study a single neuron with N presynaptic neurons. The synaptic input

matrix, Θ ∈ RN×M , indicates M distinct input patterns consisting of the contribution of

N presynaptic neurons. The entry Θi,j of Θ, for i = 1, . . . , N and j = 1, . . . ,M , is the

contributions of the ith synapse to the jth pattern.
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Let y = (yt)t∈Z be a stationary, irreducible Markov chain on some finite state space E with

transition matrix π. The adapted process y is realized on a suitable filtered probability space

(Ω,F , P ) with filtration Ft ⊂ F for t ∈ Z. Without loss of generality E = {e1, ..., eM}, where

ej ∈ RM is the unit vector in the jth coordinate direction. Let f : E → E be a function,

and set m = |range(f)|. We define the partially observable Markov chain xt = f(yt). Note

that x is not a Markov chain in general, unless f is injective. A state ej ∈ E represents the

input pattern Θej, which is presented to the neuron whenever xt = ej. Hence, the stochastic

process ρt = Θxt with values in RN represents the unweighted, postsynaptic activity at time

t ∈ Z. Later on, ρ will represent the firing rate process of the presynaptic neurons. The

dendritic potential Vt(w) at time t is given by the scalar product

Vt(w) := w · PSPt := w · PSP(ρt), (2.2.1)

where w ∈ RN denotes the synaptic weight vector and the function PSP : {Θe | e ∈

range(f)} → RN determines the unweighted postsynaptic potential. We can think of PSP

as a function from the reals into the reals that is applied to each entry of ρt independently. In

subsequent sections, we will add a random argument to PSP from a suitable probability space

such that PSP will represent random potentials driven by Poisson processes with intensities

given by the entries of ρt. We abbreviate PSPe := PSP(Θe), Ve(w) := w · PSPe ∈ R,

V (w) = wTPSP ∈ Rm defined by the matrix PSP := (PSP(Θe))e∈range(f) ∈ RN×m, with

a small abuse of notation, such that lower indices can be both vectors (denoting an input

pattern PSPe = PSP(Θe)) and integers (denoting a timepoint PSPt = PSP(ρt)) for the sake
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ρ2 w2PSP2 V (w)

cell potential
ρ1 w1PSP1

ρN wNPSPN

postsynaptic potentials

synapse 1 (w1)

synapse 2 (w2)

synapse N (wN)

reward rt
(defined by xt)

presynaptic
input pattern

(defined by xt)

Figure 2.1: Design in the case of clamping

of notational simplicity. In Figure 2.1 we illustrated the schematic design of the system.

The upper indices in the figure denote the entry of the vectors which notation we do not

explicitly use, rather adhere to a matrix and vector notation. Since PSP deterministically

depends on ρ in this simplified model, we can refer to PSP instead of ρ as the input pattern.

By stationarity, we have time independent probabilities pe := P (xt = e) and pe ≥ 0

where equality holds if and only if e 6∈ range(f). Let E[·] denote expectation with respect

to the probability measure P . For e ∈ E, let Ext=e[·] denote the conditional expectation,

conditioned on the event {xt = e}, for the case of t = 0, we will write Ee[·]. For e 6∈ range(f),

conditional expectations are defined to be some fixed constant. Furthermore, let us define a

reward function r : E → R. The real number re := r(e) is called the reward due to the state
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e. Throughout, we will use both lower index and argument notation for functions which

are defined on E. For such a function h, we write he and h(xt), and we also note that we

can identify h with h ∈ RM via the linear isomorphism, induced by the mapping ei 7→ i for

1 ≤ i ≤M .

Let us fix a discount factor γ ∈ [0, 1) and a scale factor α > 0. The reinforcement value

of a state e ∈ E is defined by

Re := αEe

[
∞∑
t=0

γtr(xt)

]
= α

∞∑
t=0

γtEe [r(xt)] , (2.2.2)

the expected, discounted, future reward given the starting point x0 = e. We also define

the random variable Rt = α
∑∞

n=0 γ
nr(xt+n). By stationarity, for any t ∈ Z, we have

Re = Ext=e [Rt]. For the reason of normalization, we set α = 1 − γ in this section. Please

note that since (xt) is in general not a Markov chain, Re is not the best estimate for the

discounted future reward given the history at the time and before observing the state e. In

case of a Markov chain (xt), however, E[Rt|Fn, n ≤ t] is xt-measurable.

Let φ be a continuously differentiable function of sublinear growth from the reals into

the reals, i.e. there are positive constants a, b such that

|φ(x)| ≤ a|x|+ b.

Furthermore, we assume that φ has strictly positive, bounded first derivative such that

re ∈ range(φ) for all e ∈ range(f). Since α = 1− γ, also Re ∈ range(φ) for all e ∈ range(f),
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and φ is diffeomorphism onto range(φ) such that φ−1 exists. The goal of value learning is to

adjust the weight vector, w, such that

R(xt) = φ(Vt(w)) (2.2.3)

at every time point t ∈ Z. Equivalently, we can write

φ−1(R) = wTPSP, (2.2.4)

with the vector φ−1(R), where we apply φ−1 entrywise to the vector R = (Re)e∈range(f).

Equation (2.2.4) is a linear equation, which is to be solved for w. If PSP has rank m, then

equation (2.2.4) has a solution, and the solutions form an affine linear subspace W ∗ of RN .

This is the case, if patterns PSPe for e ∈ range(f) are linearly independent in RN which we

will assume throughout the discussion.

2.2.2 Learning rule

In order to achieve equality in (2.2.3), we propose an online learning rule. For an arbitrary

starting point w0 ∈ RN , we define a stochastic sequence of synaptic weights wt by the update

rule

wt+1 = wt + ηt

(
r(xt) P̃SPt − φ(Vt(wt)) PSPt

)
for t ∈ N, (2.2.5)

42



where ηt > 0 is a deterministic sequence of learning rates, and P̃SPt is called the (discounted)

eligibility trace:

P̃SPt(Θ, x) := α
∞∑
i=0

γi PSPt−i (2.2.6)

which is an exponential average of past postsynaptic potentials. The name eligibility trace

comes from reinforcement learning and refers to the eligibility to update an entry of w. Note

that if a given entry of PSPt and the corresponding entry of P̃SPt are both zero, then the

update rule (2.2.5) leaves the corresponding entry of wt unchanged. Since PSPt−i can only

take finitely many values and γ ∈ [0, 1), (2.2.6) is well-defined. In this simplified model, the

synaptic update (2.2.5) directly depends on the current reward r(xt), which was indicated

in Figure 2.1 as an arrow to the synapses.

Lemma 2.2.1. The expectation of the update in rule (2.2.5) is equal to the expectation of

ηt [ Rt − φ(Vt(w)) ] PSPt if we fix w. This is to say that for all t ∈ Z and w ∈ RN we have

E
[
r(xt) P̃SPt − φ(Vt(w)) PSPt

]
= E

[
[ Rt − φ(Vt(w)) ] PSPt

]
. (2.2.7)

Proof. We only need to show that for a stationary process (xt)t∈Z and two bounded, real

valued functions h, f defined on the set where x takes its values, we have

E[fth̃t] = E[f̂tht] for all t ∈ Z,
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with ft = f(xt), f̂t =
∑∞

i=0 γ
if(xt+i) and h̃t =

∑∞
i=0 γ

if(xt−i). However this is a direct

consequence of stationarity, since E[ft ht−i] = E[ft+i ht]. Applying this observation to the

bounded function r, and entrywise to the bounded components of the function PSP, we

arrive at the statement of the lemma.

Now, we turn our attention to the issue of convergence when following the update rule

(2.2.5). We will show that (2.2.5) is a stochastic gradient descend algorithm. We follow the

idea in [46, Supp. Information, pp 8.] and define the loss function

l(v, y) := −
∫ v

0

(y − φ(s))ds.

Assume that y ∈ range(φ). Since φ is monotonically increasing, l(·, y) attains its unique

global minimum at v = φ−1(y). Let us define the cost function J : RN → R:

J(w) := E[l(V0(w),R(x0))] =
∑
e∈E

l(Ve(w),Re) pe

which has a global minimum at w if and only if w ∈ W ∗. We remark that J is invariant

under translations w → w + u, u ∈ TW ∗, where TW ∗ is the tangential space of W ∗. For

this purpose choose w∗1, w
∗
2 ∈ W ∗, and observe that Ve is linear and Ve(w

∗
1 − w∗2) = 0 for all

e ∈ range(f).

In the following lemma, we study the function J .
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Lemma 2.2.2. The ordinary differential equation (ODE)

ẇ(t) = −∇J(w(t)) (2.2.8)

is globally asymptotically stable and invariant under translations w → w+u, u ∈ TW ∗. The

set of equilibrium points is W ∗. For any w∗ ∈ W ∗, the domain of attraction D(w∗) is the

orthogonal affine linear subspace to W ∗ in w∗, namely

D(w∗) = {w ∈ RN | w − w∗ ⊥ u− w∗ for all u ∈ W ∗}. (2.2.9)

This is to say that for all w0 ∈ D(w∗), the solution w(t) of (2.2.8) with initial condition

w(0) = w0 satisfies limt→∞w(t) = w∗. Furthermore, if w(0) ∈ D(w∗) for some w∗ ∈ W ∗,

then w(t) ∈ D(w∗) holds for all t ≥ 0.

Note that for w∗1, w
∗
2 ∈ W ∗ with w∗1 6= w∗2, we have D(w∗1) ∩D(w∗2) = ∅.

Proof. The gradient of J in w is given by

∇J(w) = −
∑

e∈range(f)

(Re − φ(Ve(w))) PSPe pe = −E [(R0 − φ(V0(w))) PSP0] . (2.2.10)

By the assumption that PSP has full rank, {PSPe}e∈range(f) are linearly independent. There-

fore ∇J(w) = 0 implies Re − φ(Ve(w)) = 0 because pe > 0 for all e ∈ range(f). We obtain

that the set of equilibrium points of the ODE (2.2.8) is W ∗.
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The Hessian of J is given by

Hess J(w) =
∑
e∈E

pe φ
′(Ve(w))PSPe PSPT

e (2.2.11)

which is positive semidefinite, because φ′ > 0 and for x ∈ RN :

xT Hess J(w) x =
∑
e∈E

pe φ
′(Ve(w)) (x · PSPe)

2 .

The quadratic form xT Hess J(w) x is zero if and only if PSPe ⊥ x for all e ∈ range(f).

Let TW ∗ = {w ∈ RN | w = w∗1 − w∗2 for some w∗1, w
∗
2 ∈ W ∗} denote the tangential space

of W ∗. We have TW ∗ = Im(PSP)⊥. Consequently, J is strictly convex on each D(w∗) and

attains its unique minimum in w∗.

The lemma follows from Lyapunov’s global asymptotic stability theorem ([45, § 13. VII.

Theorem]) applied to the Lyapunov function V (w) = J(w)−J(w∗) onD(w∗). Since∇J(w) ∈

Im(PSP), we conclude that ∇J(w) ⊥ TW ∗, and therefore w(t) ∈ D(w∗) for all t ≥ 0,

whenever w(0) ∈ D(w∗). This concludes the proof.

Now, we show with the ODE method for adaptive algorithms driven by Markov chains

[17, Part I. 2, page 40] that (2.2.5) is a stochastic gradient descend method which converges

almost surely to w∗ whenever w(0) ∈ D(w∗).

Define the map F (y, z) = (f(y), z) for (y, z) ∈ E × RN . We set Xt :=
(
xt, P̃SPt

)
which

is a stationary, partially observable Markov chain with state space E×RN , since Xt = F (Yt)

where Yt = (yt, P̃SPt) is a Markov chain on E×RN and with respect to (Ft)t∈Z. For w ∈ RN ,
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let us define the map H1:

H1(w, Yt) := r(xt) P̃SPt − φ(Vt(w)) PSPt. (2.2.12)

Distinguishing between H1 and H2 in Section 2.3, we use different indices. In the present

section, we only discuss H1, so let us write H instead of H1 in the current section. The

learning rule (2.2.5) then can be written as

wt+1 = wt + ηtH(wt, Yt). (2.2.13)

Furthermore, we set h(w) := E[H(w, Y0)], thus h ≡ −∇J by Lemma 2.2.1 and equation

(2.2.10). Therefore, the expectation of (2.2.5) is a discretized version of the ODE (2.2.8) with

step size ηt. Similar to Lemma 2.2.2, we wish to conclude for (2.2.13) that limt→∞wt = w∗

a.s. given that w0 ∈ D(w∗).

The proof of the following lemma is straightforward.

Lemma 2.2.3. We have the following growth estimate with the Euclidean norm | · |

sup
w∈RN

sup
Y=(e,P̃SP)∈E×RN

|H(w, Y )|

(1 + |w|)
(

1 +
∣∣∣P̃SP

∣∣∣) <∞. (2.2.14)

Let Π denote the transition kernel of (Yt). This is to say that for Y =
(
y, P̃SP

)
∈ E×RN ,
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S ⊆ E, and any Borel set B ⊆ RN , we have

Π(Y, S ×B) =
∑
s∈S

πy,s1{γP̃SP+PSPf(s)∈B}
. (2.2.15)

Since the irreducible Markov chain y on the finite state E space has an invariant measure,

the assumptions in Theorem 5 of [17, Part II., 2.2.1] are fulfilled by Π. In our case, Π does

not depend on the weight w. As a consequence of this observation and Lemma 2.2.3, all

assumptions of [17, Part II., 1.9.1] are fulfilled by Π and H. This holds especially for the

Poisson equation (A4):

(1− Π)νw = H(w, ·)− h(w)

by setting νw(Y ) = H(w, Y )− h(w). By boundedness of φ′, we obtain

|H(w, Y )−H(w′, Y )| ≤ supφ′ |w − w′| |PSP| ≤ C|w − w′|,

with the constant C = |PSP| supφ′ > 0 using the Frobenius norm |PSP| of the PSP matrix.

Therefore, we obtain the following theorem from [17, Part II., 1.9.2, Theorem 17] and Lemma

2.2.2 with the choice U(w) = (J(w)− J(w∗))2.

Theorem 2.2.4. Let (ηt)t∈N be a sequence of learning rates such that
∑

t∈N ηt = ∞ and∑
t∈N η

2
t <∞. Then the learning rule (2.2.13) converges with probability one for any initial

parameters w0 ∈ D(w∗) and Y0 ∈ E × Rn to w∗ ∈ W ∗.
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In particular, equation (2.2.3) holds in the limit t→∞, achieving the predictions

lim
t→∞
|R(xt)− φ(Vt(wt))| = 0 almost surely.

The proof of this theorem is based on the observation that the expectation of the update

rule (2.2.5) is a discretized version of the ODE (2.2.8) with step size ηt which tends to zero

fast enough such that the paths of the ODE solution and the learning trajectory converge

in fashion of Euler’s method, but slow enough for the learning not to stop and build time

averages that coincide with probability ensemble averages by the ergodicity of the underlying

Markov chain (xt). For the details we refer to [17, Part II., 1.9.2, Theorem 17].

In simulations, we will choose η small, but fixed. We will see that in such case wt in the

limit fluctuates closely around the target w∗. In the neuroscientific application of Theorem

2.2.4, it is not reasonable to have ηt → 0, nevertheless ηt could be modulated by biological

processes.

2.3 Two-compartment neuron model

In this section we apply the value learning algorithm from the previous section to a two-

compartment neuron model from [46]. The result is a biologically plausible model for spike

time dependent synaptic plasticity that enables the neuron to learn predictions of future

events on behavioral timescales. Even though synapses are only eligible to update up to
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some tens of milliseconds after a presynaptic spike, the two-compartment neuron model

allows to predict an event seconds before its occurrence.

In this section, we are going to distinguish between dendritic potential Vt(w) and somatic

potential Ut as in [46], however, in contrast to [46], we work in a time discrete model t ∈ Z.

The evolution of Ut is random just as the evolution of Vt(w). Let us define yt, xt = f(yt), Θ,

ρt, φ, Vt(w), PSPt, PSP and P̃SPt as in the previous section.

The continuous, two-compartment neuron model from [46] assumes that the evolution of

the somatic potentials Ut is described by an ODE that is driven by the dendritic potential

Vt(w) and an input current It which nudges the soma:

C U̇t = −gL Ut + gD (Vt(w)− Ut) + It(Ut), (2.3.1)

with constant capacitance C to be set to unitless 1 and constant conductances gL and gD.

In contrast to the single compartment neuron, for the two-compartment neuron, the reward

signal rt from the previous section will be derived from the input current It. This gives the

theoretic possibility that the reward is generated by a distinct network of neurons, however,

for our analysis we will treat It as a parameter of the model that we can define arbitrarily

and indirectly through some conductance parameters.

The input current It is defined by means of time varying conductances gE
t and gI

t that

connect the soma to constant reservoirs of excitatory EE and inhibitory EI potentials. The

meaning of excitatory and inhibitory in this context is that EE > 0 is above, while EI < 0

is below the resting potential 0 of the somatic membrane potential. Typical values of cell
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Figure 2.2: Design of the two-compartment neuron

membrane potential range from -40 mV to -80 mV, and the typical value of resting potential

in an excitable neuron is around –60 mV to -70 mV. We set the resting potential to be

unitless and equal to zero, and define the input current by

It(Ut) = gE
t (EE − Ut) + gI

t(E
I − Ut). (2.3.2)

The physical meaning of the equations (2.3.1) and (2.3.2) is illustrated in Figure 2.2,

where arrows indicate the only direction of influence between pairs of objects. The outgoing

arrow below the soma indicates the neuron’s axon. The ODE (2.3.1) means that the somatic

potential is the consequences of three current flows, one due to the soma’s coupling to

the dendrite (with conductance gD), another leak current due to ion channels (with leak

conductance gL) that try to reset the membrane to its resting potential, and an input current

It that drives the somatic potential towards EE > 0 in rewarding events and towards EI < 0

in case of punishment (negative reward).
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We define the matching potential UM
t as the solution of 2.3.2 with It(U

M) ≡ 0:

UM
t =

gE
t E

E + gI
t E

I

gE
t + gI

t

.

The matching rate φ(UM
t ) takes the role of the reward signal from the previous section.

The matching potential is the potential of the soma for which the input current is zero.

We interpret it as the potential at which the neuron fully obtained the hypothetical reward

provided. Instead of working with the solution of (2.3.1), we define the somatic potential Ut

by the steady state (U̇ ≡ 0) of (2.3.1):

Ut(w) = λtV
∗
t (w) + (1− λt)UM

t , (2.3.3)

where λt = gL+gD

gL+gD+gE
t +gI

t
is called nudging factor and V ∗t (w) = gD

gL+gD
Vt(w) is called the atten-

uated dendritic potential. For e ∈ E, we define V ∗e (w) = gD

gL+gD
Ve(w) with the small abuse of

notation similarly as in the previous section, and the vector V ∗(w) = (V ∗e (w))e∈range(f)⊂E =

gD
gL+gD

wTPSP. The case λ ≡ 0 corresponds to the case of clamping from the previous sec-

tion. The approximation (2.3.3) is motivated by the strong coupling limit case of large total

conductance gL + gD + gE
t + gI

t >> 1 and slowly changing inhomogeneities gE
t , g

I
t, Vt in [46]

and [18].

We define the matching value and the somatic value by

RM
e = Ee

[
∞∑
t=0

γtφ(UM
t )

]
and Re(w) = Ee

[
∞∑
t=0

γtφ(Ut)

]
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respectively. The goal of learning is to adjust the weight vector, w, such that φ(V ∗t (w))

predicts the matching value RM(xt). Setting rt = φ(UM
t ) in rule (2.2.5) would result in

predicting RM(xt) as shown in Theorem 2.2.4. However, for purposes of biological modeling,

the learning rule cannot depend on directly φ(UM
t ) but on φ(Ut) (or more precisely, on the

somatic spiking with rate φ(Ut)). We study the question, whether setting rt = φ(Ut) in

(2.2.5) also leads to the same, or at least a similar result. The somatic firing rate φ(Ut)

respectively the reward vector

R(w) = (Re(w))e∈range(f)

serves as a moving target since Ut depends on w, see (2.3.3). In the next subsection, we

will see that setting φ(Ut) as reward instead of φ(UM
t ) in the learning rule, has biologically

interesting consequences for the time window of the predictions.

2.3.1 Fixed point of the learning

In the following theorem, we look at the solution space of equation φ(V ∗e (w)) = αRe(w) for e ∈

E for linear rate function φ.

Theorem 2.3.1. If the rate function φ is linear and α λmax < 1 − γ, then the system of

equations

φ(V ∗e (w)) = α Re(w) for e ∈ range(f) (2.3.4)

has a nonempty affine linear solution space W ∗. If, in addition, λt = λ is constant, then for
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w∗ ∈ W ∗ we obtain

φ(V ∗e (w∗)) =
α(1− λ)

1− αλ
Ext=e

[
∞∑
i=0

(
γ

1− αλ

)i
φ(UM

t+i)

]
for all e ∈ range(f). (2.3.5)

We see from (2.3.5) that setting the reward rt = φ(Ut) in rule (2.2.5), in case of con-

vergence to this fixed point, would result in predicting future behavior of the matching

potential through the matching reward, but with a different discount factor γ and a different

normalizing constant α. We will call

γeff =
γ

1− αλ

the effective discount factor and α(1−λ)
1−αλ the effective normalizing constant. We can see that

the effective discount factor converges to ∞ as αλ → 1. This allows the two-compartment

neuron to learn predictions on a behavioral timescale by choosing αλ < 1 close enough to 1

for γeff < 1 to be sufficiently large.

Proof. We have φ(Ut) = λtφ(V ∗t (w)) + (1 − λt)φ(UM
t ), because φ is linear. Since equation

(2.3.4) is an inhomogeneous system of linear equations, the solution space W ∗ is affine linear

or empty. For e ∈ range(f) and any random variable R, we have

Ex0=e[R] =

∑
s∈f−1({e}) ps Ey0=s[R]∑

s∈f−1({e}) ps
.
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By the assumption rank(PSP) = m, there exist linearly independent v1, . . . , vM in RN such

that for all e ∈ range(f)

PSPe =

∑
s∈f−1({e}) psvs∑
s∈f−1({e}) ps

.

Thus by linearity of (2.3.4), we obtain (2.3.5) for nonbijective f , provided we have proved the

theorem for bijective f . Without loss of generality, we assume that f : E → E is bijective,

hence (xt) is a stationary Markov chain. By stationarity, we can write (2.3.4) as

φ(V ∗t ) = α E

[
∞∑
i=0

γi(λt+iφ(V ∗t+i) + (1− λt+i)φ(UM
t+i))

∣∣∣∣∣xt
]

= α
∞∑
i=0

γi(vi(xt) + ui(xt)) (2.3.6)

with deterministic functions vi and ui:

vi(e) = Ee [λi φ(V ∗i )] and ui(e) = Ee
[
(1− λi) φ(UM

i )
]

for e ∈ E and i ∈ N0.

We would like to express vi in terms of (uj)j∈N. We can also express vj and uj by the

following iteration:

v0(e) = E [λ0 φ(V ∗0 )|x0 = e] = λ(s) φ(V ∗(e))

vj(e) =
∑
h∈E

πj(e, h)v0(h), (2.3.7)
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and for uj similarly

u0(e) = Ee
[
(1− λ0) φ(UM

0 )
]

= (1− λ(e))φ(UM(e))

uj(e) =
∑
h∈E

πj(e, h)u0(h). (2.3.8)

In matrix notation, vj = πjv0 and uj = πju0. The condition (2.3.6) for i = 0 is sufficient,

since it implies the conditions for i ∈ N. In the vector notation, we obtain from (2.3.6) with

the diagonal matrix (diag(λ))ee = λe:

v0 = α
∞∑
j=0

γjdiag(λ)
(
πjv0 + πju0

)
(2.3.9)

If we find the function v0, which satisfies the above condition, then the fixed point

equation (2.3.4) becomes a linear equation for w with inhomogeneity φ−1(diag(1/λ)v0). In

fact,

V ∗(w) = φ−1(diag(1/λ)v0) (2.3.10)

is a linear equation with unknown w. In the steady state, φ(V ∗(w)) = diag(1/λ)v0 gives the

dendritic prediction. Define the matrix A =
∑∞

j=0 γ
jπj, which is the expected, discounted,

future matrix. Let us write v = v0 and u = u0. Then (2.3.9) becomes

v = α diag(λ)(Av + Au)

where λ, v and u are functions on E. This is equivalent to (1−αdiag(λ)A)v = αdiag(λ)Au.
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Thus, if α|diag(λ)A|∞ < 1, then

v =
∞∑
j=0

(α diag(λ)A)j α diag(λ)Au.

Therefore, in the steady state, we have

φ(V ∗(w)) =
∞∑
j=0

diag(λ)−1(α diag(λ)A)j+1u. (2.3.11)

The condition α|diag(λ)A|∞ < 1 is satisfied if α λmax < 1 − γ, because |diag(λ)A|∞ ≤

λmax

∑∞
j=0 γ

j|πj|∞ = λmax

1−γ . Therefore the solutions form a nonempty affine linear space W ∗.

Note that the linear equation (2.3.10) has a solution by the full-rank assumption on the

matrix PSP. Also note that (2.3.11) is the analogue of (2.3.5) in the general case of not

constant nudging factor λ.

To obtain the second part of the theorem, assume that λ is constant, and simplify (2.3.11)

for w∗ ∈ W ∗

φ(V ∗(w∗)) =
∞∑
j=0

λj(αA)j+1u = (1− λ)
∞∑
j=0

λj(αA)j+1φ(UM).

For n ∈ N0 multiple application of A gives

Anφ(UM)(e) = Ee

[
∞∑
j1=0

· · ·
∞∑
jn=0

γj1+···+jnφ(UM
j1+···+jn)

]
.

Now, we collect all terms φ(UM
i ) such that Anφ(UM)(e) = Ee

[∑∞
i=0 αn,iγ

iφ(UM
i )
]
, where
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αn,i =
(
n+i−1

i

)
, the number of combinations with repetition. Thus, we obtain

φ(V ∗t (w∗)) = (1− λ)
∞∑
j=0

λjαj+1E

[
∞∑
i=0

αj+1,iγ
iφ(UM

t+i)

∣∣∣∣∣xt
]

= (1− λ)E

[
∞∑
i=0

γ̃iφ(UM
t+i)

∣∣∣∣∣xt
]
,

where γ̃i = γi
∑∞

j=0 λ
jαj+1αj+1,i = γi

∑∞
j=0 λ

jαj+1
(
j+i
i

)
= α γi

(1−αλ)i+1 . This also shows that

the series is almost surely absolutely convergent and that the summation rearrangements we

made are valid. Therefore,

φ(V ∗t (w∗)) = α
1− λ

1− αλ
E

[
∞∑
i=0

(
γ

1− αλ

)i
φ(UM

t+i)

∣∣∣∣∣xt
]
.

2.3.2 Convergence of learning

Let us assume that φ is linear and α λmax < 1− γ. In particular W ∗ is nonempty and affine

linear. We define (Yt) as we did before Lemma 2.2.3. Similarly to Theorem 2.2.4, we would

like to prove that the sequence of weights (wt), which is defined by the modified learning

rule

wt+1 = wt + ηt

(
φ(U(wt)) P̃SPt − φ(V ∗t (wt)) PSPt

)
= wt + ηt H2(wt, Yt) for t ∈ N, (2.3.12)
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converges to some w∗ ∈ W ∗ with probability one. First, we need to prove that for any

starting point w(0), the solution of the ODE

ẇ(t) = h2(w(t)) (2.3.13)

converges almost surely to some w∗ ∈ W ∗, where h2(w) = E[H2(w, Y0)]. The following

lemma will be an analogue of Lemma 2.2.2. For notational simplicity, we omit the lower

index 2 from the functions H2 and h2.

Lemma 2.3.2. Assume that φ is linear. Then the ordinary differential equation (2.3.13) is

globally asymptotically stable. The set of equilibrium points is W ∗. For any w∗ ∈ W ∗, the

domain of attraction is the orthogonal affine linear subspace to W ∗ in w∗, for which we write

D(w∗). This is to say that for all w0 ∈ D(w∗), the solution w(t) of (2.3.13) with initial

condition w(0) = w0 satisfies limt→∞w(t) = w∗. Furthermore, if w(0) ∈ D(w∗) for some

w∗ ∈ W ∗, then w(t) ∈ D(w∗) holds for all t ≥ 0.

Proof. By the proof of Lemma 2.2.1, we have

h(w) = E [(Rx0(w)− φ(V ∗0 (w))) PSP0] ,

thus, by the full rank property of PSP, the set of equilibrium points of (2.3.13) is W ∗. By

linearity of (2.3.4), the statement w ∈ W ∗ can be characterized by wTPSP = β for some

fixed vector β ∈ Rm, therefore TW ∗ = Im(PSP)⊥. Therefore w(t) ∈ D(w∗), whenever

w(0) ∈ D(w∗). It remains to show that D(w∗) is the domain of attraction of w∗ ∈ W ∗. For
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this purpose, we look for a suitable Lyapunov function. Let us define the obvious guess of

a Lyapunov function L(w) = dist(w,W ∗)2/2, which is zero exactly on W ∗. The gradient is

given by ∇L(w) = w − w∗, where w∗ denotes the orthogonal projection of w onto W ∗. If

we show that h(w) · ∇L(w) ≤ 0, and equality holds if and only if w ∈ W ∗, then the lemma

follows from Lyapunov’s global stability theorem ([45, § 13. VII. Theorem]). For w, u ∈ RN ,

we have

h(w + u) = h(w) + E[(R∗0(u)− φ(V ∗0 (u))) PSP0]

where R∗t (u) = α
∑∞

i=0 γ
iφ(λt+iV

∗
t+i(u)). Let us define ∆w = w − w∗ and compute

h(w) · ∇L(w) =

h(w∗ + ∆w) ·∆w =

h(w∗) ·∆w + E [(R∗0(∆w)− φ(V ∗0 (∆w))) PSP0] ·∆w =

E [(R∗0(∆w)− φ(V ∗0 (∆w))) PSP0] ·∆w =

φ′
gD

gL + gD
E

[(
α
∞∑
t=0

γtλtPSPt ·∆w − PSP0 ·∆w

)
PSP0 ·∆w

]
≤

φ′
gD

gL + gD
E

[
α λmax

∞∑
t=0

γt |PSPt ·∆w| |PSP0 ·∆w| − (PSP0 ·∆w)2

]
.

By the Cauchy-Schwarz inequality applied to the minuend of the difference, we have

h(w) · ∇L(w) ≤

φ′
gD

gL + gD

(
α λmax

∞∑
t=0

γt − 1

)
E
[
(PSP0 ·∆w)2] .
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If α λmax ≤ 1 − γ, then the upper bound is nonpositive, and since TW ∗ = Im(PSP)⊥,

it is zero if and only if ∆w = 0. Thus h(w) · ∇L(w) ≤ 0, and equality holds if and only if

w ∈ W ∗.

From [17, 1.9.2 Theorem 17] and the properties of Π from Section 2.2.2, we conclude

almost sure convergence in the two-compartment model under the assumption of a linear

rate function φ.

Theorem 2.3.3. Assume that φ is linear. Let (ηt) be a sequence of learning rates such that∑
t∈N ηt = ∞ and

∑
t∈N η

2
t < ∞. Then the learning rule (2.3.12) converges with probability

one for any initial parameters w0 ∈ D(w∗) and Y0 ∈ E×Rn to some w∗ ∈ W ∗. In particular,

equations (2.3.4) and (2.3.5) hold in the limit t→∞, achieving the desired predictions

lim
t→∞
|φ(V ∗t (wt))− α Rxt(wt)| = 0 almost surely.

2.3.3 Time-continuous, spiking model

In order to approximate the time-continuous model, we introduce the time step 0 < ∆t ≤ 1.

Instead of the time independent transition matrix π, we introduce the time step dependent

transition matrix π̃ = ∆tπ+ (1−∆t)IdM . In the limit ∆t→ 0, we obtain a time-continuous

Markov chain with generator π−IdM . Fix τ > 0, we scale the parameters α, γ, η by replacing

them according to α→ α
τ
∆t, γ → e−∆t/τ , and η → η∆t.
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We define the postsynaptic potential process PSPt as follows. Assume that the entries

of Θ are nonnegative, thus the process ρ has nonnegative entries. Define a RN valued Cox

process (Ct)t∈R (inhomogenous Poisson process with random rate process) with rate process

(ρt)t∈R. Jumps of Ct correspond to spikes of the corresponding presynaptic neuron. Here,

ρt =
∑∞

n=−∞ ρn1∆t[n,n+1)(t) for t ∈ R. With τl > τs > 0, we define spike response kernel

κ(t) = cκθ(t)(e
−t/τl − e−t/τs), with constant cκ > 0 and the Heaviside function θ. The post

synaptic potential and the eligibility trace are given by:

PSPt = C ∗ κ(t) P̃SPt =
α

τ

∫ ∞
0

e−
s
τ PSPt−s ds, (2.3.14)

where we think of each entry Ci as a measure on [0,∞) placing a Dirac mass at the locations

of spikes (jumps) of (Ci
t)t≥0 for i = 1, . . . , N . Thus PSPi

t is the sum of response kernels, each

started at one of the jumps of Ci
t . Again, we set Vt(w) = w · PSPt. The update rule in the

time-continuous case becomes:

dw

dt
(t) = η

[
φ(Ut) P̃SPt − φ(V ∗t (wt)) PSPt

]
for t ∈ R, (2.3.15)

with a learning rate η > 0. Taking the limit ∆t → 0, we see from Theorem 2.3.1 that the

rule (2.3.15) achieves the predictions

φ(V ∗t (w∗)) =
α

τ
(1− λ)E

[∫ ∞
0

e−s/τeffφ(UM
t+s)

∣∣∣∣xt] , (2.3.16)

for constant λ and linear φ, where τeff = τ
1−αλ . For the sake of computer simulations, we will
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approximate the ODE (2.3.15) by the process

wt+∆t = wt + ∆t η
[
φ(Ut) P̃SPt − φ(V ∗t (wt)) PSPt

]
for t ∈ ∆t N, (2.3.17)

where P̃SPt = α∆t
τ

∑∞
i=0 e

− i∆t
τ PSPt−i∆t.

2.4 Simulations

We have tested the learning rules (2.3.12) and (2.3.17) in computer simulations. We look at

an experiment with five states of which only one is rewarding in the case of a deterministic

Markov chain. Simulations are carried out using a linear and a sigmoid rate function with

different discount factors γ. Then we turn our attention to the setting of an arbitrary

transition matrix, ten states with one rewarding state and a linear rate function. In the

cases where we use a biologically artificial linear rate function, we can compare the outcome

with our theoretical results (2.3.5) and (2.3.11). We only perform experiments with constant

nudging factor λ. In the spiking model with rule (2.3.17), we simulated an environment of 2

seconds where only the last 200 ms is rewarding and plotted simulated predictions against

the theoretic values (2.3.5).
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2.4.1 Two-compartment model without spiking

In this subsection we set the reversal potential for excitation EE = 0 mV and for inhibition

EI = −75 mV, and define the rate functions

φsigmoid(U) =
φmax

1 + exp(− U−θ
U73%−θ

)
, φlinear(U) =

60

75
(U + 75),

where φsigmoid has a soft spiking threshold at θ = −40 mV and reaches approximately
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Figure 2.3: Linear and sigmoid rate functions φ

73% of its maximum φmax = 60 Hz at U73% = −35 mV (see Figure 2.3). Thus we have

φsigmoid(θ) = 30 Hz and φsigmoid(U73%) ≈ 43.86 Hz. At the resting potential of −70 mV,

we have spontaneous spiking at less than 0.15 Hz, and 4 Hz respectively. The choice of

rate functions is arbitrary, we could have chosen any continuously differentiable, increasing

function of sublinear growth.

We define a deterministic chain on five states E = {e1, e2, · · · , e5}. All states are nonre-
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warding except the last one e5 (Figure 2.4, Left). In the rewarding state, we set UM = 0

mV, in other states UM = −75 mV. Note that the experiment only depends on UM, but not

the specific choice of the conductances gE, gI or the reversal potentials. We keep λ constant

to demonstrate the validity of (2.3.5). Furthermore, we define gL = 0.1 µS and gD = 2 µS

to get V ∗t (w) = (2/2.1) Vt(w).

In the simulation, we compute the weight evolution of a single neuron which connects

to 50 presynaptic neurons. We start the learning at w0 which is normal with mean zero

and standard deviation 5. We set the learning rate η = 0.08 and run the simulation for

500 000 transitions of the Markov chain. Much less rounds are sufficient for learning, but

we want to show the accuracy of the theoretic finding. Note that in these simulations there

is no randomness yet. After learning, we look at the dendritic predictions φ(V ∗(ej)) for

j = 1, · · · , 5 (Figure 2.4, Middle).

After doing so for different values of γ ∈ {0.1, 0.4, 0.7} and λ ∈ {0, 0.05, ..., 0.95}, we plot

the dependence of an effective discount factor γeff on λ for γ ∈ {0.1, 0.4, 0.7} (Figure 2.4,

Right). In the case of a linear rate function, we know from equation 2.3.5 that γeff = γ
1−αλ .

We also performed simulations for random transitions. We generate a random transition

matrix on 10 states, where only the last state is rewarding. We set the learning rate to η = 1

and perform 100 000 transitions of the Markov chain. Using the linear rate function and

setting γ = 0.4 and λ = 0.7, we obtain Figure 2.5 of the theoretic (according to 2.3.5) and

learned values of the dendritic predictions φ(V ∗).
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Figure 2.4: The effective discount factor γeff depends through λ on the coupling
conductances in the two-compartment model. Left: We look at a deterministic
Markov chain, with positive reward in state e5 and zero reward otherwise (negligible reward
for nonlinear φ). Middle: For nonlinear rate functions φ, the learned, future discounted
values φ(V ∗) are fitted with an exponential function to find γeff . Right: The effective
discount factor γeff increases with λ for γ ∈ {0.1, 0.4, 0.7}; Continuous lines: relationship for
linear rate (2.3.5); Dashed lines: linear interpolation for learned values in case of sigmoid
rate.

Figure 2.5: Theoretical and learned rates φ(V ∗t ) for each of the 10 states for a nondetermin-
istic Markov chain with state 10 being rewarding.

2.4.2 Two-compartment model with spiking

In another simulation, we assumed a two-compartment spiking model with presynaptic spik-

ing. In this subsection, we use unitless potentials and resting potential 0 as described in

Section 2.3 and the rate function φ(U) = U× 0.03 [kHz] for U ≥ 0, and 0 otherwise. We
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introduced a time step ∆t = 0.1 ms as described in Subsection 2.3.3. The rates ρt are dis-

crete Ornstein Uhlenbeck processes with a length of 2 s independent for each neuron, which

is kept constant for 2 ms then decays with a factor e−1/50 after each of those 2 ms, reaching

an effective decay of 1/e after 100 ms. The Gaussian noise standard deviation of the discrete

Ornstein Uhlenbeck processes is 0.2 which is added after every 2 ms. Postsynaptic spikes

are Poisson distributed with rates ρt and a refractory period of 1 ms. This choice makes

patterns vary sufficiently continuously but still easily distinguishable after long enough time.

The rates ρt are being kept constant for 2 ms each time after they are generated. This setting

corresponds to 1000 states of a partially observable, deterministic, cyclic Markov chain, each

state being presented for the duration of 20 = 2 ms/∆t steps to the dendritic compartment.

The idea of introducing Ornstein Uhlenbeck processes into the simulations was developed by

J. Brean and W. Senn in [18].

Reward is provided to the soma during the last 200 ms in each round. Initial weights are

set to be zero to be able to present the bootstrapping effect graphically. The learning rate

is set η = 0.001, which is multiplied by ∆t = 0.1 as shown in (2.3.17). Other parameters are

displayed below Figure 2.6. Note that we use theoretic values for comparison according to

Theorem 2.3.1 instead of the continuous time limit (2.3.16), even though we replaced α, γ, η

by the scaled parameters from Section 2.3.3. Results are plotted in Figure 2.6.

It is visible from Figure 2.6 that the dendritic potential is successively elevated after each

round of 2 s of learning. The bootstrapping effect of the dendritic compartment predicting

its own predictions results (after long enough learning) in an effective discount of time

window 600 ms (meaning γeff = e−∆t/600ms), while the plasticity window is less than 20 ms
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Figure 2.6: A two-compartment neuron learns to represent the future, expected,
discounted reward based on presynaptic spiking. The rate φ(V ∗t ) is plotted against
time for each of the training sessions. The Poisson firing rate of 2000 presynaptic
neurons depend on the “state of the environment”, changing after every 20 ms. Reward
is only delivered during the last 200 ms. Parameters: τeff = 600 ms, γeff = e−∆t/τeff , τ ≈
8.17 ms, γ = e−∆t/τ , λ = .8, α = 1.23, ∆t = 0.1, η = 0.001, UM

t ∈ {0, 0.4}, τl = e−∆t/10 ms,
τs = e−∆t/(10/3) ms, cκ = 5, V ∗t (w) = 0.96 Vt(w).

for depression (window of PSP) and less than 35 ms for potentiation (window of P̃SP) after

a presynaptic spike (Figure 2.7). We can see that in the first run, the dendritic prediction

is not elevated until the onset of the reward. During the first rewarding phase, weights

with active synapses within 35 ms (plasticity window) before the onset of the reward are

learning to predict the elevated predictions of the first run. We can see that in the second

phase the baseline is elevated. The reason is that some neurons that are involved during and

immediately before the rewarding phase are also spiking at different times during the entire

2 s of the training. In the second run, somatic prediction rate elevates even 35 ms before

the onset of the actual reward. Our theory does not imply an elevation above the baseline

more than 35 ms before the onset of the reward in the second run, though choosing the
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Figure 2.7: Postsynaptic potential (PSP) and its trace (P̃SP) after a presynaptic spike

postsynaptic spiking rates to be Ornstein Uhlenbeck processes with a decay time window

of 100 ms, we can expect elevation above the baseline even 100 ms before presenting the

reward signal. First the elevation is learnt successively in every round, then during the 20th

training session also depression of the baseline at the beginning of the training session is

visible (Figure 2.8, Upper).

Running the experiment for 100 cycles with the same parameters as in Figure 2.6, we

obtain the plot in Figure 2.8, Lower. The signal approximately fits the theoretic values

after 100 cycles of learning. The dendritic compartment signals the expected future reward

at 1200 ms with a predicted somatic firing rate of about 20 Hz already 600 ms prior to its

onset. Since there is no reward or punishment signal yet at 1200 ms (meaning UM = 0),

we have λ = .8, therefore φ(Ut) = φ(λtV
∗
t ) = λt φ(V ∗t ) = .8 × 20 Hz = 16 Hz by equation

(2.3.3), so the soma fires at 16 Hz.
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Figure 2.8: Long training sessions of a two-compartment neuron with presynaptic spiking.
The rate φ(V ∗t ) is plotted against time for each of the training sessions.
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Chapter 3

Exit Time Asymptotics of a Switching

Process

3.1 Introduction and Main result

In [37], [23], [20], [5], [6], [7], [1], [9], [8], [14], [13], [12], exit problems for processes in

neighborhoods of unstable equilibria under the influence of white noise of small magnitude ε

were studied. Among other results, it was obtained (under various additional sets of technical

assumptions in [20], [5], [7], [1]) that if the origin is a hyperbolic critical point of a smooth

vector field b, with simple leading eigenvalue λ > 0 of the linearization, then for any initial

condition belonging to the stable manifold of the origin, the time τε when the solution of the

Itô SDE

dXε(t) = b(Xε(t))dt+ εσ(Xε(t))dW (t), (3.1.1)
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with nondegenerate smooth diffusion matrix σ exits a small neighborhood U of the origin

satisfies the following limit theorem: there are numbers D±1 such that

(
Xε(τε), τε −

1

λ
ln

1

ε

)
d−→
(
qB, DB +

1

λ
ln |N |

)
, ε→ 0, (3.1.2)

where q±1 are the points where the invariant curve associated with the eigenvalue λ intersects

the boundary of U , B and N are independent random variables, B is 1/2-Bernoulli, N is

standard Gaussian.

It is clear that such an asymptotic result for solutions of an SDE must describe the

asymptotic behavior for a whole class of systems that are well approximated by this kind of

SDE or its exemplar one-dimensional additive noise linear version

dXε(t) = λXε(t)dt+ εdW.

In fact, it was shown in [8] that the exit times for Glauber dynamics for the Curie–Weiss mean

field model belong to the universality class associated with (3.1.2), i.e., they satisfy a similar

limit theorem under the infinite system size limit, with limiting distribution being ln |N | up

to scaling and translation. These results were used in [9] in the context of decision/reaction

times in psychology.

It is interesting to explore this universality class further and study processes of a totally

different nature that exhibit similar behavior. In this dissertation, we study a family of

processes with random switching, also known under the names of hybrid systems, piecewise
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deterministic Markov processes (PDMP), and random evolutions. The bibliography on these

processes is growing. Interestingly, they were introduced and rediscovered many times by

different groups of researchers. Here we give just a few references to works of some of these

groups: [36], [19], [33], [2], [25], [47], [16], [11], [38], [41].

In general, these processes are defined by a family of vector fields and a collection of rates

of switching between those vector fields. At each time the system is in the state where it

evolves along one of the vector fields from the family. At random times, the system jumps

between states switching active vector fields from one to another according to the prescribed

Markovian rates.

In the limit of infinite switching rates, the evolution can be effectively described by the

law of large numbers through the averaging of the vector fields involved. One can also state

a central limit theorem and, moreover, a functional central limit theorem for such systems

on a finite time interval, see, e.g., [2, Chapter 4].

More interesting questions involve the behavior of such systems over unbounded time

intervals. In this dissertation, we study a class of switching processes on time scales loga-

rithmic in the switching rate µ and show that it belongs to the universality class associated

with (3.1.2). We consider processes driven intermittently by two vector fields in one dimen-

sion. The main condition on these vector fields is that their average defines an unstable

critical point. The exit from a neighborhood of that unstable equilibrium takes a logarith-

mically long time in the switching rate µ. Thus, similarly to the situation in [8], the usual

techniques of weak convergence on a finite time horizon are not sufficient for obtaining the

desired universality result and have to be supplemented with additional arguments. This is
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joint work with Yuri Bakhtin and was published in [10].

Let us now describe the system we are interested in and our main result more formally.

Let f1, f−1 ∈ C2(R) with a1 = f ′1(0) and a−1 = f ′−1(0). We also define

F (x) =
1

2
(f1(x) + f−1(x)), x ∈ R, (3.1.3)

and require that a = F ′(0) = (a1 + a−1)/2 > 0. Furthermore, we require that |f1(0)| =

|f−1(0)| > 0 and sgn(F (x)) = sgn(x), where sgn(z) = z/|z| for z 6= 0 and sgn(0) = 0.

We will study the dynamics driven by these functions on a finite segment [−R,R] for some

R > 0, so without loss of generality we will assume that the functions f±1 and their first two

derivatives are bounded.

An example of such pair of functions is given by f1(x) = eax, f−1(x) = −e−ax for x ∈

[−R,R] and a > 0.

Let (σµt )t≥0 be a homogeneous, rate µ > 0, right continuous Markov process on the state

space {+1,−1} with an arbitrary initial distribution on {+1,−1} at time 0. The realizations

of this process almost surely make finitely many switches between 1 and −1 on any finite

time interval, so omitting the exceptional set, we can work on a probability space (Ω,F , P )

that guarantees that the number of switches is locally finite for all realizations.

We will study the random trajectories (xµt )t≥0 defined by

dxµt
dt

= fσµt (xµt ), t ≥ 0,

xµ0 = 0.

74



The paths of the stochastic process (xµt )t≥0 are continuous. They switch between the dy-

namics governed by f1 and f−1 intermittently, being controlled by the Markov chain (σµt )t≥0.

For any r > 0, we define the exit time from the interval [−r, r]:

τµ(r) = inf{t : |xµt | ≥ r}.

Our main result describes the joint asymptotic behavior of the exit time τµ(r) and exit

location xµτµ(r) as µ → ∞. The sign of xµτµ(r) can be interpreted as a decision between two

alternative directions of exit made by the system by the time τµ(r). Let us define

K(r) =

∫ r

0

(
1

F (x)
− 1

ax

)
dx, r 6= 0. (3.1.4)

Let us also define D(0) to be arbitrary and

D(r) = K(r) +
log |r|
a

+
log(
√

2a/|f1(0)|)
a

, r 6= 0.

Theorem 3.1.1. For any r > 0, as µ→∞,

(
xµτµ(r), τ

µ(r)− 1

2a
log µ

)
d−→

(
r · sgnN, −1

a
log |N |+D(r · sgnN)

)
,

where N is a standard Gaussian random variable.

Our strategy for the proof of Theorem 3.1.1 consists of studying the asymptotic exit time

of (xµt )t≥0 from the interval [−µγ, µγ] for γ ∈ (1/4, 1/2), then the remaining time to hit the
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boundary {r,−r}. In Lemma 3.2.4, we show that up to an additive constant depending

on a and |f1(0)| (the last term in the definition of D), the time needed to exit [−µγ, µγ] is

− 1
a

log |N |+ 1/2−γ
a

log µ, after which the process becomes deterministic in the limit µ→∞,

and is driven by F , see Lemma 3.2.6. By Lemma 3.2.5, the process driven by F and started

from {µγ,−µγ} requires K(r · sgnN) + log |r|
a

+ γ
a

log µ time to hit {r,−r}, depending on the

sign of exit direction sgnN . Summing up the two contributions to τµ(r), the terms ±γ
a

log µ

cancel, and we obtain Theorem 3.1.1.

3.2 Proof

For brevity, throughout this section, we will often omit µ in the notation and use σt = σµt ,

xt = xµt , τ(r) = τµ(r), etc.

By Taylor’s theorem, there are functions R1, R−1 : R→ R such that

fσ(x) = σf1(0) + aσx+Rσ(x), x ∈ R, σ ∈ {1,−1}, (3.2.1)

and |Rσ(x)| ≤ c 2−1x2, where

c = max
σ∈{−1,1}

sup
x∈R
|f ′′σ (x)|. (3.2.2)

The generator of the Markov process (σt, xt) on any bounded, smooth function g :

{−1, 1} × R→ R is given by

Lg(σ, x) = fσ(x)∂xg(σ, x) + µ(g(−σ, x)− g(σ, x)). (3.2.3)
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Applying (3.2.3) to the functions g(σ, x) = σ and g̃(σ, x) = σx we obtain by Proposition 1.7

in [24, Chapter 4] that the processes

Zt = Zµ
t = σt + 2µ

∫ t

0

σsds,

Z̃t = Z̃µ
t = σtxt −

∫ t

0

fσs(xs)σsds+ 2µ

∫ t

0

σsxsds (3.2.4)

are local martingales with quadratic variations [Z]t = 4B(t), where B(t) = |{s ∈ [0, t] : σs 6=

σ−s}| denotes the number of jumps of σ up to time t ≥ 0, and

[Z̃]t = 4
∑

s∈[0,t]: σs 6=σ−s

|xs|2.

Moreover, the true martingale property also follows since there is a constant C > 0 such

that |xt| ≤ Ct for all t > 0 due to our assumptions on f±1. Note that (B(t))t≥0 is a rate µ

Poisson process.

Integration of (3.2.1) and substitution of (3.2.4) gives for any t ∈ [0,∞)

xt =

∫ t

0

fσs(xs)ds =

∫ t

0

(σsf1(0) + axs + (aσs − a)xs +Rσs(xs)) ds

= a

∫ t

0

xsds+
f1(0)

2µ
(Zt − σt) +

∫ t

0

(aσs − a)xsds+

∫ t

0

Rσs(xs)ds.

Noting that aσs − a = (∆a/2)σs with ∆a = a1 − a−1, we can use (3.2.4) to rewrite this as

xt =a

∫ t

0

xsds+
f1(0)

2µ
(Zt − σt) +

∆a

4µ

∫ t

0

fσs(xs)σsds+
∆a

4µ
(Z̃t − σtxt) +

∫ t

0

Rσs(xs)ds.
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The variation of constants formula gives for any t ∈ [0,∞)

xt = eat
(
f1(0)

2µ

∫ t

0

e−asd(Z − σ)s +
∆a

4µ

∫ t

0

e−asfσs(xs)σsds

+
∆a

4µ

∫ t

0

e−asd(Z̃ − σx)s +

∫ t

0

e−asRσs(xs)ds

)
. (3.2.5)

Lemma 3.2.1. Suppose there is a sequence of stopping times θµ with respect to the natural

filtration of σ satisfying

θµ
P→∞, as µ→∞.

Then as µ→∞, the random variable

Iµ =
1
√
µ

∫ θµ

0

e−asd(Zµ − σ)s (3.2.6)

converges in distribution to N (0, 2a−1).

Proof. By the alternating series test,
∫ θµ

0
e−asdσs exists and belongs to the interval (−2, 2).

Consequently, µ−1/2
∫ θµ

0
e−asdσs → 0 as µ → ∞. Therefore, we only need to study conver-

gence in distribution of the part with the martingale integrator.

For the rest of the proof, we follow the ideas in the proof of [8, Lemmas 3.1, 3.2]. First,

we define a martingale

Vt = V µ
t =

∫ t∧θµ

0

e−asdZs (3.2.7)

with quadratic variation [V ]t =
∫ t∧θµ

0
e−2asd[Z]s. Then we define a time-changed martingale
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Ut = Uµ
t = Vg(t) for t ∈ [0, 2a−1], where

g(s) = − log(1− as/2)

2a
, s ∈ [0, 2a−1),

and g(2a−1) = ∞. We will prove that for any t ∈ [0, 2a−1], the quadratic variation of U

satisfies

µ−1[U ]t
P→ t, µ→∞. (3.2.8)

Then, by [8, Theorem 3.1], which is just a specific case of Theorem 1.4 in [24, Chapter 7],

µ−1/2Ut converges to N (0, t) in distribution for any t ∈ [0, 2a−1] as µ → ∞. Therefore,

V µ
∞ = Uµ

2a−1

d→ N (0, 2a−1) as µ→∞.

It remains to prove (3.2.8). For all t ∈ [0, 2a−1],

[U ]t =
∑

s:s≤g(t)∧θµ
σ(s)6=σ(s−)

H(s) (3.2.9)

for H(s) = 4e−2s. We claim that for any nonincreasing function H(·),

µ−1
∑

s:s≤g(t)∧θµ
σ(s) 6=σ(s−)

H(s)
P→
∫ g(t)

0

H(s)ds, µ→∞. (3.2.10)

To prove this relation, we first note that it holds for H(s) = 1[0,h](s), for any h > 0, since
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the Law of Large Numbers implies

µ−1
∑

s:s≤g(t)∧θµ
σ(s)6=σ(s−)

1[0,h](s) = µ−1B(g(t) ∧ h ∧ θµ)
P→ g(t) ∧ h =

∫ g(t)

0

1[0,h](s)ds.

Using this and approximating monotone functions with sums of indicator functions, we

obtain (3.2.10) which, combined with (3.2.9), gives (3.2.8) and completes the proof of the

lemma.

For any γ > 0 we can define θµ = inf{t : |xt| ≥ µ−γ}. Note that for µ large enough to

ensure µ−γ ≤ r, we have θµ ≤ τµ(r).

Lemma 3.2.2. The random variables

Jµ =

∫ θµ

0

e−asd(Z̃ − σx)s (3.2.11)

satisfy

P (|Jµ| > µ−δ+1/2)→ 0 (3.2.12)

for any δ < γ as µ → ∞. Consequently, the sequence (µ−1/2Jµ) converges to zero in

probability as µ→∞.

Proof. For any t ≥ 0, we use integration by parts to write

∫ t

0

e−asd(σx)s = e−atσtxt + a

∫ t

0

e−asσsxsds,
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∣∣∣∣∫ θµ

0

e−asd(σx)s

∣∣∣∣ ≤ e−aθ
µ|σθµxθµ |+ a

∫ ∞
0

e−as|σsxs|ds ≤ 2µ−γ.

For the other term of J including the martingale integrator, we can apply Chebyshev in-

equality followed by Proposition 6.1 in [24, Chapter 2]

P

(∣∣∣∣∫ θµ

0

e−asdZ̃s

∣∣∣∣ > µ−δ+1/2

)
≤ µ2δ−1E

[(∫ θµ

0

e−asdZ̃s

)2
]

= µ2δ−1E
[∫ θµ

0

e−2asd[Z̃]s

]
.

Since the quadratic variation [Z̃]s∧θµ is stochastically dominated by 4µ−2γB(s), by the Camp-

bell formula in the second step

E
[∫ θµ

0

e−2asd[Z̃]s

]
≤ E

[∫ ∞
0

e−2as4µ−2γdB(s)

]
=

4µ1−2γ

2a
,

which multiplied by µ2δ−1 converges to zero.

Lemma 3.2.3. If 0 < γ < 1
2
, then θµ

P→∞ as µ→∞.

Proof. We need to check that for an arbitrary T > 0, P (θµ < T )→ 0 as µ→∞. Recalling

the definition of V in (3.2.7) and estimating

E[V ]θµ ≤
2µ

a

by Campbell’s formula, then using the Chebyshev inequality and the martingale property of

V 2 − [V ] (see Proposition 6.1 in [24, Chapter 2]), we obtain

P

(
1

2µ
|Vθµ| > µ−γ/2−1/4

)
≤ E[V ]θµ

4µ2µ−γ−1/2
≤ 2µa−1

4µ2µ−γ−1/2
→ 0 (3.2.13)
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as γ < 1
2
. By (3.2.12), we also have

P

(
1

µ
|Jµ| > µ−γ/2−1/4

)
→ 0. (3.2.14)

On the set {θµ < T}, we can use (3.2.5) and (3.2.2) to see that if µ is large enough to

guarantee supσ∈{−1,1},x∈[−µ−γ ,µ−γ ] |fσ(x)| ≤ 2|f1(0)|, then

µ−γ = |xθµ| = eaθ
µ

∣∣∣∣f1(0)

2µ

∫ θµ

0

e−asd(Z − σ)s +

∫ θµ

0

e−asRσs(xs)ds

+
∆a

4µ

∫ θµ

0

e−asfσs(xs)σsds+
∆a

4µ
Jµ
∣∣∣∣

≤ eaT
(
|f1(0)|

2µ
|Vθµ|+

|f1(0)|
µ

+
cµ−2γ

2a
+
|f1(0)∆a|

2µa
+
|∆a|
4µ
|Jµ|

)
.

Therefore, on the set {θµ < T} ∩
{

1
2µ
|V µ
θµ| ≤ µ−γ/2−1/4, 1

µ
|Jµ| ≤ µ−γ/2−1/4

}
,

µ−γ ≤ eaT
(
|f1(0)|µ−γ/2−1/4 +

|f1(0)|
µ

+
cµ−2γ

2a
+
|f1(0)∆a|

2µa
+
|∆a|

4
µ−γ/2−1/4

)

that is impossible for large µ and γ < 1
2
. Combining this with (3.2.13) and (3.2.14), we

complete the proof.

Lemma 3.2.4. If 1
4
< γ < 1

2
, then

(
sgn(xθµ), θµ − 1/2− γ

a
log µ

)
d→
(

sgn(H), −1

a
log |H|

)
, µ→∞,

where H is a random variable with Law(H) = N (0, f1(0)2(2a)−1).
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Proof. Using (3.2.5) at time θµ, and introducing

Hµ =
f1(0)

2
Iµ +

√
µ

∫ θµ

0

e−asRσs(xs)ds+
∆a

4
√
µ

∫ θµ

0

e−asfσs(xs)σsds+
∆a

4
√
µ
Jµ, (3.2.15)

where Iµ was defined in (3.2.6) and Jµ in (3.2.11), we obtain

θµ =
1/2− γ

a
log µ− 1

a
log |Hµ| (3.2.16)

and

sgn(xθµ) = sgnHµ. (3.2.17)

The first term on the right-hand side of (3.2.15) converges in distribution toH by Lemma 3.2.1.

The second term converges to 0 almost surely due to

√
µ

∣∣∣∣∫ θµ

0

e−asRσs(xs)ds

∣∣∣∣ ≤ √µa c 2−1µ−2γ → 0.

Since fσs(xs) and σs are bounded, the third term on the right-hand side of (3.2.15) converges

to 0 almost surely, and the fourth term converges to zero in probability by Lemma 3.2.2.

Since the distribution of H has no atom at 0, the only point of discontinuity of functions

x 7→ log |x| and x 7→ sgnx, the lemma follows now from (3.2.16) and (3.2.17).

Now, we consider the exit time from the fixed interval [−r, r]. We define ηt = xθµ+t,
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σ′t = σθµ+t and the exit time

ν(r) = inf{t ≥ 0 : |ηt| ≥ r}.

Recalling (3.1.3), we define (St)t≥0 as the flow associated with the ODE

ż = F (z).

Note that (St) preserves the sign of the initial condition. For δ 6= 0 we introduce t(δ, r) to

be the only solution of |Stδ| = r.

Lemma 3.2.5. For any r 6= 0,

lim
δ→0

(
t(δ, r)− 1

a
log

r

δ

)
= K(r),

where δ approaches zero from the right if r > 0, and from the left if r < 0, and K(r) is given

in (3.1.4).

Proof. By separation of variables,

t(δ, r) =

∫ r

δ

dx

F (x)
=

∫ r

δ

(
1

F (x)
− 1

ax

)
dx+

∫ r

δ

1

ax
dx

=

∫ r

δ

(
1

F (x)
− 1

ax

)
dx+

1

a
log

r

δ
.

Letting δ → 0 and using F ′(0) = a, we complete the proof.

84



Lemma 3.2.6. There is r0 > 0 such that for any r ∈ (0, r0)

sup
0≤t≤t(η0,r·sgn(η0))

|ηt − Stη0|
P→ 0 as µ→∞.

Proof. Choosing g(σ, x) = f−σ(x), we obtain for |x| < R

Lg(σ, x) = fσ(x)f ′−σ(x) + 2µσG(x),

where G(x) = 1
2
(f1(x) − f−1(x)) > 0. By Proposition 1.7 in [24, Chapter 4], the process

Z ′(t) = −g(σ′t, ηt) +
∫ t

0
Lg(σ′s, ηs)ds is a martingale.

We will only prove

(
sup

0≤t≤t(η0,r·sgn(η0))

|ηt − Stη0|

)
1{sgn(η0)=α}

P→ 0, µ→ 0, (3.2.18)

for α = 1. The case of α = −1 is treated similarly.

The rest of the proof follows closely the proof of [8, Lemma 3.6]. We define ∆(t) =

ηt − Stη0. Since for t ≥ 0,

ηt = η0 +

∫ t

0

F (ηs)ds+

∫ t

0

σ′sG(ηs)ds,

Stη0 = η0 +

∫ t

0

F (Stη0)ds,
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we have

∆(t) =

∫ t

0

(F (ηs)− F (Stη0))ds+

∫ t

0

σ′sG(ηs)ds.

Using the Lipschitz constant L(r) of F on [−r, r], we obtain on the event {sgn(η0) = 1} for

any t ≤ t(η0, r) = t(µ−γ, r)

|∆(t ∧ ν(r))| ≤ L(r)

∫ t∧ν(r)

0

|∆(s)|ds+

∣∣∣∣∣
∫ t∧ν(r)

0

σ′sG(ηs)ds

∣∣∣∣∣ . (3.2.19)

Note that by the definition of Z ′, we have 2µ
∫ t

0
σ′sG(ηs)ds = Z ′(t)+f−σ′t(ηt)−

∫ t
0
fσ′s(ηs)f

′
−σ′s(ηs)ds.

Defining A1(r) = supσ∈{1,−1},z∈[−r,r] |fσ(z)| and A2(r) = supσ∈{1,−1},z∈[−r,r] |fσ(z)f ′−σ(z)|, we

can bound

2µ

∣∣∣∣∣
∫ t∧ν(r)

0

σ′sG(ηs)ds

∣∣∣∣∣ ≤ sup
s≤t(|η0|,r)∧ν(r)

|Z ′(s)|+ A1(r) + A2(r)(t(η0, r) ∧ ν(r))

for any t ∈ [0, t(η0, r)] on the event {sgn(η0) = 1}. We claim that if δ < 1/2, then

P

(
(2µ)−1 sup

s≤t(η0,r)∧ν(r)

|Z ′(s)| > µ−δ, sgn(η0) = 1

)
→ 0, µ→∞.

The quadratic variation process [Z ′]t ≤ 4A2
1(r)(B(t+ τ)−B(τ)) is stochastically dominated

by 4A2
1(r) times a rate µ Poisson process. Using the Chebyshev inequality followed by
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Burkholder–Davis–Gundy inequality [21, Thm. 92, Chap. 7], we have with some C̃ > 0

P

(
sup

s≤t(η0,r)∧ν(r)

|Z ′(s)| > 2µµ−δ, sgn(η0) = 1

)
≤ C̃µ2(δ−1)E

[
[Z ′]t(µ−γ ,r)

]
≤ C̃µ2(δ−1)4A2

1(r)E[B(t(µ−γ, r) + τ)−B(τ)]

= C̃µ2(δ−1) 4A2
1(r)µ t(µ−γ, r)

which converges to zero by Lemma 3.2.5 as µ → ∞, whenever δ < 1/2. We conclude that

for any r > 0

P

(∣∣∣∣∣
∫ t(η0,r)∧ν(r)

0

σ′sG(ηs)ds

∣∣∣∣∣ > µ−δ, sgn(η0) = 1

)
→ 0.

For r0 > 0, on the event

{∣∣∣∣∣
∫ t(η0,r0)∧ν(r0)

0

σ′sG(ηs)ds

∣∣∣∣∣ ≤ µ−δ, sgn(η0) = 1

}
,

Gronwall’s inequality applied to (3.2.19) implies that there is C > 0 such that for t ≤ t(η0, r0),

|∆(t ∧ ν(r0))| ≤ eL(r0)t(η0,r0)µ−δ ≤ CµγL(r0)/aµ−δ. (3.2.20)

Since F ′(0) = a, we can choose r0 so small such that γL(r0)/a < 1/2. Consequently, for

some δ < 1/2, we have ρ = δ − γL(r0)/a > 0 so that the right hand side in the bound

above converges to 0. For any r ∈ (0, r0), we conclude using (3.2.20) at t = ν(r0) that
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P (ν(r0) < t(η0, r), sgn(η0) = 1) → 0. Now, using (3.2.20) at s ≤ t(η0, r) < t(µ−γ, r0), we

have

P

(
ν(r0) ≥ t(η0, r), sup

s≤t(η0,r)

|∆(s)| > Cµ−ρ, sgn(η0) = 1

)
→ 0,

which implies (3.2.18) for α = 1.

Combining Lemmas 3.2.4, 3.2.5 and 3.2.6, we conclude

Lemma 3.2.7. For any r ∈ (0, r0)

(
xτ(r), τ(r)− 1

2a
log µ

)
d→
(
r · sgn(H),−1

a
log |H|+ log r

a
+K(r · sgnH)

)
as µ→∞.

Now let us consider the exit time from an arbitrary interval.

Lemma 3.2.8. For r ∈ (0, r0), define ηt = xτ(r)+t. Then, for any T > 0,

sup
0≤t≤T

|ηt − Stη0|
P→ 0 as µ→∞.

The proof follows the same steps as the proof of Lemma 3.2.6, however easier as the time

horizon is fixed this time. Our main result follows from Lemmas 3.2.7 and 3.2.8.
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lattices and dimension reduction in heterogeneous nanowires. Discrete Contin. Dyn.
Syst. S., 10:119–139, 2017.

[40] A. Magazinov. On percolation of two-dimensional hard disks. Commun. Math. Phys.,
364(1):1–43, Nov 2018.

91

http://www.appliedprobability.org
https://math.nyu.edu/~gaal/thesis/GaalMASoSe2013.pdf
https://math.nyu.edu/~gaal/thesis/GaalMASoSe2013.pdf


[41] F. Malrieu. Some simple but challenging Markov processes. Ann. Fac. Sci. Toulouse
Math. (6), 24(4):857–883, 2015.

[42] F. Merkl and S. Rolles. Spontaneous breaking of continuous rotational symmetry in
two dimensions. Electron. J. Probab., Volume 14, paper no. 57:1705–1726, 2009.

[43] T. Richthammer. Translation-invariance of two-dimensional Gibbsian point processes.
Commun. Math. Phys., 274:81–122, 2007.

[44] T. Richthammer. Lower bound on the mean square displacement of particles in the
hard disk model. Commun. Math. Phys., 345:1077–1099, 2016.

[45] J. L. Salle and S. Lefschetz. Stability by Liapunov’s Direct Method With Appliations.
Academic Press, United Kingdom Edition, 1961.

[46] R. Urbanczik and W. Senn. Learning by the dendritic prediction of somatic spiking.
Neuron, 81(3):521–528, 2014.

[47] G. G. Yin and Ch. Zhu. Hybrid switching diffusions (Properties and applications),
volume 63 of Stochastic Modelling and Applied Probability. Springer, New York, 2010.

92


	Abstract
	List of Figures
	Long-Range Orientational Order in Near-Lattice Gibbsian Hard-Core Particle Systems
	Introduction
	The three-dimensional enumerated model
	Configuration space
	Probability space
	Result
	Proofs

	Two-dimensional model with local geometry dependent interactions
	Definitions
	Results
	Proofs


	Value Learning of Spiking Neurons
	Introduction
	The case of clamping
	The model
	Learning rule

	Two-compartment neuron model
	Fixed point of the learning
	Convergence of learning
	Time-continuous, spiking model

	Simulations
	Two-compartment model without spiking
	Two-compartment model with spiking


	Exit Time Asymptotics of a Switching Process
	Introduction and Main result
	Proof

	Bibliography

